如图,直三棱柱中,点是上一点.
⑴若点是的中点,求证平面;
⑵若平面平面,求证.
(1)详见解析,(2)详见解析.
解析试题分析:(1)要证线面平行,需有线线平行.由为的中点,想到取的中点;证就成为解题方向,这可利用三角形中位线性质来证明.在由线线平行证线面平行时,需完整表示定理条件,尤其是线在面外这一条件;(2)证明线线垂直,常利用线面垂直.由直三棱柱性质易得底面直线,所以有,因而需在侧面再找一直线与直线垂直. 利用平面平面可实现这一目标. 过作,由面面垂直性质定理得侧面,从而有,因此有线面垂直:面,因此.在面面垂直与线面垂直的转化过程中,要注意列全定理所需要的所有条件.
试题解析:
(1)连接,设,则为的中点, 2分
连接,由是的中点,得, 4分
又,且,
所以平面 7分
⑵在平面中过作,因平面平面,
又平面平面,所以平面, 10分
所以,
在直三棱柱中,平面,所以, 12分
又,所以平面,所以. 15分
考点:线面平行判定定理,线线垂直判定定理,
科目:高中数学 来源: 题型:解答题
如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.
(1)证明:EO∥平面ACD;
(2)证明:平面ACD⊥平面BCDE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中点,F为ED的中点.
(1)求证:平面PAC⊥平面PCD;
(2)求证:CF∥平面BAE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求直线B1C1与平面A1BC1所成角的正弦值;
(2)在线段BC1上确定一点D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在正三棱柱ABC—A1B1C1中,.
(1)求直线与平面所成角的正弦值;
(2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com