精英家教网 > 高中数学 > 题目详情

如图四棱锥中,底面是平行四边形,平面的中点,.

(1)试判断直线与平面的位置关系,并予以证明;
(2)若四棱锥体积为  ,,求证:平面.

(1)参考解析;(2)参考解析

解析试题分析:(1)由题意判断直线与平面的位置关系,这类题型要转化为直线EF与平面内一条直线平行或则相交,所以转化为平面内两条直线的位置关系.通过作出直线EG即可得到直线EF与直线CG是相交的,即可得到结论.
(2)平面与平面垂直关键是要转化为直线与平面的垂直,通过研究底面平行四边形的边的大小即可得到BD垂直于BC.即可得到结论.

试题解析:(1)直线与平面相交.
证明如下:过,

由底面是平行四边形得,     
相交,故直线与平面相交.
(2)解:过B作   四棱锥体积为
平面 
 
,  平面
考点:1.线面的位置关系.2.面面的位置关系.3.空间想象力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在直三棱柱ABCA1B1C1中,D、E分别为AA1、CC1的中点,AC⊥BE,点F在线段AB上,且AB=4AF.若M为线段BE上一点,试确定M在线段BE上的位置,使得C1D∥平面B1FM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在圆锥中,已知的直径,点在底面圆周上,且的中点.

(1)证明:平面
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为矩形,平面中点.

(1)证明://平面
(2)证明:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,点上一点.

⑴若点的中点,求证平面
⑵若平面平面,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱与底面垂直,,, M、N分别是的中点,点P在线段上,且,

(1)证明:无论取何值,总有.
(2)当时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱中,中点,中点.

(1)求三棱柱的体积;
(2)求证:
(3)求证:∥面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,

(Ⅰ)求证:
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线ACBD的交点,MPD的中点,AB=2,∠BAD=60°.

(1)求证:OM∥平面PAB
(2)求证:平面PBD⊥平面PAC
(3)当四棱锥P-ABCD的体积等于时,求PB的长.

查看答案和解析>>

同步练习册答案