| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | -$\frac{2}{3}$ | D. | -$\frac{3}{2}$ |
分析 首先利用余弦定理求出角A,然后利用平面向量的数量积公式解答即可.
解答 解:在△ABC中,AB=3,AC=2,BC=4,所以cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}=\frac{{3}^{2}+{2}^{2}-{4}^{2}}{2×3×2}=-\frac{1}{4}$,
所以$\overrightarrow{CA}$与$\overrightarrow{AB}$的夹角的余弦值为$\frac{1}{4}$,
则$\overrightarrow{CA}$•$\overrightarrow{AB}$=|AC||AB||cosA|=2×3×$\frac{1}{4}$=$\frac{3}{2}$;
故选:A.
点评 本题考查了余弦定理的运用以及数量积的运算;注意向量的夹角与三角形内角的关系.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{9}$ | B. | ±$\frac{5}{9}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | ±$\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com