精英家教网 > 高中数学 > 题目详情
19.若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=5.

分析 代入P的坐标,求得m=16,求出抛物线的焦点坐标,由两点的距离公式计算即可得到.

解答 解:P(1,4)为抛物线C:y2=mx上一点,
即有42=m,即m=16,
抛物线的方程为y2=16x,
焦点为(4,0),
即有|PF|=$\sqrt{(1-4)^{2}+(4-0)^{2}}$=5.
故答案为:5.

点评 本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;
②“没有水分,种子能发芽”是不可能事件;    
③“明天五指山要下雨”是必然事件;
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.三角形ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2-2a-4b+5=0,
(1)若C=$\frac{π}{3}$,求c的值;
(2)若sinA+sinB=$\frac{\sqrt{3}}{2}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.执行如图所示的程序框图,若输入k=10,则输出的S为1023

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将函数f(x)=sin2x-$\sqrt{3}x$(x>0)的所有极大值点按从小到大顺序依次排列,形成数列{xn},θn=x1+x2+…+xn,则下列命题正确的是①②④⑤(写出你认为正确的所有命题的序号)
①函数f(x)=sin2x-$\sqrt{3}$x在x=$\frac{π}{12}$处取得极大值;
②tanx${\;}_{n}=2-\sqrt{3}$;
③sinθn≤sinθn+1对于任意正整数n恒成立;
④存在正整数T,使得对于任意正整数n,都有sinθn=sinθn+T=0成立;
⑤n取所有的正整数,sinθn的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD中,平面PAC⊥底面ABCD,BC=CD=$\frac{1}{2}$AC=2,∠ACB=∠ACD=$\frac{π}{3}$.
(1)证明:AP⊥BD;
(2)若AP=$\sqrt{7}$,AP与BC所成角的余弦值为$\frac{{\sqrt{7}}}{7}$,求二面角A-BP-C的余弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y的取值如表所示:
x2345
y2.23.85.56.5
从散点图可以看出,y与x线性相关,若回归方程为$\widehat{y}$=1.46x+a,则实数a=-0.61.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知三棱柱ABC-A1B1C1中,D是AC的中点,求证:AB1∥平面DBC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知在各项为正的等比数列{an}中,a2与a8的等比中项为8,则4a3+a7取最小值时首项a1 等于(  )
A.8B.4C.2D.1

查看答案和解析>>

同步练习册答案