分析 求出两个命题是真命题时的m的范围,利用复合命题的真假写出结果即可.
解答 解:p真时有:(m-2)(m-5)<0即2<m<5;(3分)
q真时有:m≤$\frac{{x}^{2}+4}{x}$=x+$\frac{4}{x}$,对x∈(0,+∞)恒成立,即m≤$(x+\frac{4}{x})_{min}$,
而x∈(0,+∞)时,x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,当x=2时取等号.即m≤4.(7分)
由p∨q是真命题,且綈(p∧q)也是真命题得:p与q为一真一假;(9分)
当p真q假时,$\left\{\begin{array}{l}2<m<5\\ m>4\end{array}$,可得4<m<5;
当p假q真时,$\left\{\begin{array}{l}m≤2或m≥5\\ m≤4\end{array}$,解得m≤2;(11分)
综上,所求m的取值范围是(-∞,2]∪(4,5).(12分)
点评 本题考查命题的真假的判断与应用,双曲线的简单性质以及函数恒成立条件的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {(0,1),(1,2)} | B. | {0,1} | C. | (0,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直于同一平面的两个平面平行 | |
| B. | 平行于同一直线的两个平面平行 | |
| C. | 垂直于同一平面的两条直线平行 | |
| D. | 平行直线的在同一平面上的投影相互平行 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com