分析 (1)令f(x)=0,求出函数的零点即可;
(2)求出a+3的范围,从而求出t的范围.
解答 解:(1)a=3时,f(x)=4x-2x+1-3,
令4x-2x+1-3=0,得:(2x-3)(2x+1)=0,
∵2x+1≠0,∴2x-3=0,
故函数f(x)的零点是log23;
(2)若f(x)有零点,
则a=(2x-1)2-1,
∵2x>0,
∴a=(2x-1)2-1∈[-1,+∞),
∴a+3∈[2,+∞),
∴$\frac{6}{a+3}$∈(0,3],
∴t=$\frac{a-3}{a+3}$=1-$\frac{6}{a+3}$,
∴-2≤t=1-$\frac{6}{a+3}$<1,
故t的范围是[-2,1).
点评 本题考查了函数的零点问题,考查二次函数以及指数函数的性质,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com