精英家教网 > 高中数学 > 题目详情
已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*
(1)求证:数列{an+
1
2
}为等比数列;
(2)记Tn=S1+S2+L+Sn,求Tn的表达式;
(3)记Cn=
2
3
(an+
1
2
),求数列{nCn}的前n项和Pn
(1)∵3an=2Sn+n,
∴a1=1,
当n≥2时,3(an-an-1)=2an+1,即an=3an-1+1,
∴an+
1
2
=3an-1+1+
1
2
=3(an-1+
1
2
),
∴数列{an+
1
2
}是首项为
3
2
,公比为3的为等比数列;
(2)由(1)知,an+
1
2
=
3
2
•3n-1
∴an=
1
2
×3n-
1
2

∴Sn=a1+a2+…+an
=
1
2
3(1-3n)
1-3
-
n
2

=
3
4
•3n-
1
4
(2n+3),
∴Tn=S1+S2+…+Sn
=
3
4
(3+32+…+3n)-
1
4
×
(5+2n+3)n
2

=
3
4
3(1-3n)
1-3
-
n(n+4)
4

=
9
8
(3n-1)-
n(n+4)
4

(3)∵Cn=
2
3
(an+
1
2
)=
2
3
×
1
2
×3n=3n-1
∴Pn=1×30+2×3+3×32+…+n•3n-1
∴3Pn=1×3+2×32+…+(n-1)•3n-1+n•3n
两式相减得:
-2Pn=1+3+32+…+3n-1-n•3n
=
1-3n
1-3
-n•3n
=
1-2n
2
×3n-
1
2

∴Pn=
1+(2n-1)•3n
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题


观察以下各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,你得到的一般性结论是                     .(要求:用n的表达式表示,其中n).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列
1
1+2
1
1+2+3
,…
1
1+2+…+n
的前n项和为(  )
A.
n
n+1
B.
2n
n+1
C.
n
n+2
D.
n
2(n+1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=-6×210,点(n,2a+1-an)在直线y=211x上,设bn=an+1-an+t,数列{bn}是等比数列.
(1)求出实数t;(2)令cn=|log2bn|,问从第几项开始,数列{cn}中连续20项之和为100?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等比数列an=
1
3n-1
,其前n项和为Sn=
n
k-1
ak,则Sk+1与Sk的递推关系不满足(  )
A.Sk+1=Sk+
1
3k+1
B.Sk+1=1+
1
3
Sk
C.Sk+1=Sk+ak+1D.Sk+1=3Sk-3+ak+ak+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据程序框图,将输出的x,y值依次分别记为x1,x2,…,x2013;y1,y2,…,y2013
(Ⅰ)写出数列{xn}的递推公式,求{xn}的通项公式;
(Ⅱ)写出数列{yn}的递推公式,求{yn}的通项公式;
(Ⅲ)求数列{xn+yn}的前n项和Sn(n≤2013).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和为Sn,a1=2,Sn=
1
2
an+1-1
(n∈N*).
(Ⅰ)求a2,a3
(Ⅱ)求数列{an}的通项an
(Ⅲ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足a3=6,a4+a6=20
(1)求通项an
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=2,an+1=2an+n,n∈N*
(1)证明数列{an+n+1}是等比数列;
(2)求an的表达式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案