精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x+1(0≤x<1),g(x)=2x-$\frac{1}{2}$(x≥1),函数h(x)=$\left\{\begin{array}{l}{f(x),0≤x<1}\\{g(x),x≥1}\end{array}\right.$.若方程h(x)-k=0,k∈[$\frac{3}{2}$,2)有两个不同的实根m,n(m>n≥0),则n•g(m)的取值范围为[$\frac{3}{4}$,2).

分析 作出函数的图象,利用图象结合已知条件,利用消元法将n•g(m)转化为关于n的一元二次函数进行求解即可得到结论.

解答 解:作出函数h(x)=$\left\{\begin{array}{l}{f(x),0≤x<1}\\{g(x),x≥1}\end{array}\right.$,的图象,
若方程h(x)-k=0,k∈[$\frac{3}{2}$,2)有两个不同的实根m,n(m>n≥0),则:$\frac{1}{2}≤n<1$,
ng(m)=nf(n)=n(n+1)=n2+n=(n+$\frac{1}{2}$)2-$\frac{1}{4}$,
∴$\frac{3}{4}$≤n•g(m)<2,
故答案为:[$\frac{3}{4}$,2)

点评 本题考查函数与方程的综合应用,一次函数二次函数指数函数的值域等知识,作出函数的图象是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x3-3ax+$\frac{1}{4}$,若函数y=f(x)的极小值为0,则a的值为(  )
A.$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如表:
年龄[15,25)[25,35)[35,45)[45,55)[55,65]
支持“延迟退休”人数5101021
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异;
 45岁以下45岁以上合计
支持   
不支持   
合计   
(Ⅱ)若从年龄在[45,55),[55,65]的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为ξ,求随机变量ξ的分布列及数学期望.
参考数据:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2}{x},x≥2}\\{{x}^{2}-3,x<2}\end{array}\right.$,若关于x的方程f(x)=k有三个不相等的实数根,则实数k的取值范围是(  )
A.(-3,1)B.(0,1)C.(-2,2)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C:x2+y2-2x-3=0,直线l:ax+y+1=0,那么它们的位置关系(  )
A.圆与直线相切B.圆与直线相交
C.圆与直线相离D.以上三种均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于x的方程$\frac{a}{x+1}$=1的解是负数,则a的取值范围为a<1且a≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆x2+y2=4与圆x2+(y-8)2=4.
(1)若两圆在直线y=$\frac{\sqrt{5}}{2}$x+b的两侧,求实数b的取值范围;
(2)求经过点A(0,5)且和两圆都没有公共点的直线的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=sinax-cosax(a>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成等差数列,且公差为π.
(1)求函数y=f(x)的解析式;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,若$f(\frac{B}{2})=\sqrt{2}$,且a、b、c成等比数列,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|log4x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m,n的值分别为(  )
A.$\frac{1}{2}$,2B.$\frac{1}{4}$,4C.$\frac{1}{4}$,2D.$\frac{1}{2}$,4

查看答案和解析>>

同步练习册答案