分析 (1)若两圆在直线y=$\frac{\sqrt{5}}{2}$x+b的两侧,则保证圆心在直线的两侧,且直线和圆相切或相离,
(2)设出直线方程,利用直线和圆相离建立不等式关系进行求解即可.
解答 解:(1)如图所示,结合图形可知O(0,0)必在直线y=$\frac{\sqrt{5}}{2}$x+b的下方,(0,8)在其上方![]()
所以有$\left\{\begin{array}{l}{0<\frac{\sqrt{5}}{2}×0+b}\\{8>\frac{\sqrt{5}}{2}×0+b}\end{array}\right.$所以0<b<8.
又依题意,直线y=$\frac{\sqrt{5}}{2}$x+b与两圆相切或相离,
所以$\left\{\begin{array}{l}{\frac{|b|}{\sqrt{1+\frac{5}{4}}}≥2}\\{\frac{|b-8|}{\sqrt{1+\frac{5}{4}}}≥2}\end{array}\right.$得$\left\{\begin{array}{l}{|b|≥3}\\{|b-8|≥3}\end{array}\right.$.
即$\left\{\begin{array}{l}{b≥3或b≤-3}\\{b≥11或b≤5}\end{array}\right.$,
所以3≤b≤5或b≥11.
又结合0<b<8,
可得b的取值范围是3≤b≤5.
(2)设所求的直线方程为y=kx+5,
因为它与两圆无公共点即与两圆相离,
所以必有$\left\{\begin{array}{l}{\frac{5}{\sqrt{1+{k}^{2}}}>2}\\{\frac{3}{\sqrt{1+{k}^{2}}}>2}\end{array}\right.$即$\left\{\begin{array}{l}{{k}^{2}<\frac{21}{4}}\\{{k}^{2}<\frac{5}{4}}\end{array}\right.$,
所以-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$.
点评 本题主要考查直线和圆的位置关系及两圆的位置关系,首先两圆要相离或外切才能在直线的两侧,直线和两圆也要相离或相切.利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (1,+∞) | C. | (-∞,-1] | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com