精英家教网 > 高中数学 > 题目详情
10.给出算法:
第一步,输入n=5.
第二步,令i=1,S=1.
第三步,判断i≤n是否成立,若不成立,输出S,结束算法;若成立,执行下一步.
第四步,令S的值乘以i,仍用S表示,令i的值增加1,仍用i表示,返回第三步.
该算法的功能是计算并输出S=1×2×3×4×5的值.

分析 执行算法,依次写出每次循环得到的S,i的值,可得该算法的功能是计算并输出S=1×2×3×4×5的值.

解答 解:执行算法可得:
n=5,i=1,S=1
满足条件1≤5,S=S×i=1,i=i+1=2
满足条件2≤5,S=S×i=2,i=i+1=3
满足条件3≤5,S=S×i=6,i=i+1=4
满足条件4≤5,S=S×i=24,i=i+1=5
满足条件5≤5,S=S×i=120,i=i+1=6
不满足条件6≤5,输出S的值为0,
该算法的功能是计算并输出S=1×2×3×4×5的值.
故答案为:计算并输出S=1×2×3×4×5的值.

点评 本题主要考查了循环结构的程序算法,正确依次写出每次循环得到的S,i的值,得该算法的功能是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.正方体的八个顶点中有四个恰好为正四面体的顶点,则正方体与正四面体的表面积的比值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{4}$+y2=1,直线l:x-y+10=0,
(Ⅰ)若M(x,y)为椭圆上的点,求x-y的最大值;
(Ⅱ)P为椭圆上的动点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知{an}是项数相同的等比数列,求证:{an2}也是等比数列;
(2)设数列{an}的前n项和为Sn,若an+Sn=n,cn=an-1,求证:数列{cn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC的边AB长为2a,若BC的中线为定长m,求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=x2+(a+2)x+3a-3-10ln(x+3),其中a∈R
(1)当a=-4时,求函数f(x)的极值
(2)若曲线y=f(x)不经过第四象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积等于(  )
A.$\frac{26}{3}$B.$\frac{25}{3}$C.$\frac{22}{3}$D.$\frac{20}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,点C在平面A1B1C1内的射影点为A1B1的中点O,且AC:BC:AB:AA1=1:1:$\sqrt{2}$:2.
(1)求证:AB⊥平面OCC1
(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=1,an+1=$\frac{2n-1}{2n+1}$an(n∈N),则数列{an}的通项公式是${a}_{n}=\frac{1}{2n-1}$.

查看答案和解析>>

同步练习册答案