精英家教网 > 高中数学 > 题目详情
11.某几何体的三视图如图所示,则该几何体的体积等于(  )
A.$\frac{26}{3}$B.$\frac{25}{3}$C.$\frac{22}{3}$D.$\frac{20}{3}$

分析 由已知中的三视力可得该几何体是一个棱长为2的正方体,截去8个角得到的,进而可得答案.

解答 解:由已知中的三视力可得该几何体是一个棱长为2的正方体,截去8个角得到的,
正方体的体积为8,
截去的八个三棱锥的体积均为:$\frac{1}{3}×\frac{1}{2}$×1×1×1=$\frac{1}{6}$,
故几何体的体积V=8-$\frac{8}{6}$=$\frac{20}{3}$,
故选:D.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若正三棱柱的所有棱长均为a,且其体积为16$\sqrt{3}$,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求数列1,3a,5a2,7a3,…(2n-1)an-1,当a=2时的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出算法:
第一步,输入n=5.
第二步,令i=1,S=1.
第三步,判断i≤n是否成立,若不成立,输出S,结束算法;若成立,执行下一步.
第四步,令S的值乘以i,仍用S表示,令i的值增加1,仍用i表示,返回第三步.
该算法的功能是计算并输出S=1×2×3×4×5的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.
(1)求证:CD⊥平面ABB1A1
(2)求证:AC1∥平面CDB1
(3)求三棱锥B-CDB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知三棱柱ABC-A1B1C1中,点P在棱AA1上,若三棱锥P-BB1C1与三棱锥P-A1B1C1的体积比为3,则$\frac{P{A}_{1}}{PA}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=alnx+x2-(a+2)x.
(1)当a=1时,求函数g(x)的极值;
(2)设定义在D上的函数y=f(x)在点P(m,f(m))处的切线方程为l:y=h(x),当x≠m,若$\frac{f(x)-h(x)}{x-m}$>0在D内恒成立,则称P为函数y=f(x)的“界点”.当a=8时,问函数y=g(x)是否存在“界点”?若存在,求出“界点”的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1为双曲线C:$\frac{{x}^{2}}{14}$-$\frac{{y}^{2}}{11}$=1的左焦点,直线l过原点且与双曲线C相交于P、Q两点,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则△PF1Q的周长为22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图①,在等腰△ABC中,O是底边BC的中点,将△BAO沿AO折至△B′AO的位置.

(1)求证:AO⊥平面B′OC;
(2)若三棱锥B′-AOC的三视图是如图②所示的三个直角三角形,求二面角A-B′C-O的余弦值.

查看答案和解析>>

同步练习册答案