精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|2x-a|+|x-1|.
(1)当a=3时,求不等式f(x)≥2的解集;
(2)若?x∈R,f(x)≥|x-1|-x+5,求实数a的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(1)当a=3时,不等式f(x)≥2?|2x-3|+|x-1|≥2,通过对x范围的分类讨论,去掉绝对值符号,即可求得原不等式的解集;
(2)f(x)=|2x-a|+|x-1|≥|x-1|-x+5?|2x-a|≥5-x,通过对x>5与x≤5的讨论,结合题意,即可求得实数a的取值范围.
解答: 解:(1)当a=3时,由不等式f(x)≥2得:|2x-3|+|x-1|≥2,
∴当x<1时,3-2x+1-x≥2,解得x≤
2
3

当1≤x≤
3
2
时,3-2x+x-1≥2,解得x≤0,与1≤x≤
3
2
的交集为∅;
当x≥
3
2
时,2x-3+x-1≥2,解得x≥2.
∴当a=3时,不等式f(x)≥2的解集为{x|x≤
2
3
或x≥2};
(2)∵f(x)=|2x-a|+|x-1|≥|x-1|-x+5,
∴|2x-a|≥5-x.
当x>5时,5-x<0,原不等式恒成立,∴a∈R;
当x≤5时,x-5≤a-2x≤5-x,即3x-5≤a≤x+5,
∵x+5≤10,
∴a≤10,又?x∈R,f(x)≥|x-1|-x+5,
∴实数a的取值范围为(-∞,10].
点评:本题考查绝对值不等式的解法,着重考查等价转化思想与分类讨论思想的综合应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
m
2
x2+2(1-m)x-4lnx(m∈R).
(1)讨论函数f(x)的单调区间;
(2)若对于任意的x∈(0,2],都有f(x)≥0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(wx+
π
6
),w>0,x∈(-∞,+∞),且以
π
2
为最小正周期,
(1)求f(0);
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

当1≤x≤2时,求函数y=-x2-x+1值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:|x+1|-|x-2|≥x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x•lnx,g(x)=
lnx
x

(Ⅰ)求函数f(x)的极值和单调区间:
(Ⅱ)对于x>0的任意实数,不等式g(x)≤ax-1≤f(x)恒成立,求实数a的取值;
(Ⅲ)数列{1nn}(n∈N*)的前n项和为Sn,求证:
(n-1)2
2n
≤Sn
n(n-1)(n+1)
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某公路段在某一时刻内监测到的车速频率分布直方图如图所示.
(Ⅰ)求纵坐标中参数h的值及第三个小长方形的面积;
(Ⅱ)求车速的众数v1,中位数v2的估计值;
(Ⅲ)求平均车速
.
v
的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在海岸线l一侧C处有一个美丽的小岛,某旅游公司为方便游客,在l上设立了A,B两个报名点,满足A,B,C中任意两点间的距离为10千米.公司拟按以下思路运作:先将A,B两处游客分别乘车集中到AB之间的中转点D处(点D异于A,B两点),然后乘同一艘游轮前往C岛.据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费4元,游轮每千米耗费24元.设∠CDA=α,每批游客从各自报名点到C岛所需运输成本S元.
(1)写出S关于α的函数表达式,并指出α的取值范围;
(2)问中转点D距离A处多远时,S最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,其图象关于x=1对称,当x∈[0,1]时,函数f(x)=x2,则f(3.5)=
 

查看答案和解析>>

同步练习册答案