精英家教网 > 高中数学 > 题目详情
目前,在我国部分省市出现了人感染H7N9禽流感病毒,为有效防控,2013年4月下旬,北京疫苗研制工作进入动物免疫原性试验阶段。假定现已研制出批号分别为1,2,3,4,5的五批疫苗,准备在A、B、C三种动物身上做试验,给每种动物做实验所选用的疫苗是从这五个批号中任选其中一个批号的疫苗.
(Ⅰ)求给三种动物注射疫苗的批号互不相同的概率;
(Ⅱ)记给A、B、C三种动物注射疫苗的批号最大数为,求的分布列和数学期望.
(Ⅰ) ;
(Ⅱ)的分布列为

1
2
3
4
5
P





 
数学期望为

试题分析:(Ⅰ)                4分
(Ⅱ)的可能取值分别为1,2,3,4,5



的分布列为

1
2
3
4
5
P





 
数学期望为       12分
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。本题对计算能力要求较高,难度较大。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
76
81
  (1)已知甲厂生产的产品共84件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品,
①用上述样本数据估计乙厂生产的优等品的数量;
②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设离散型随机变量X的分布列为
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
求:(Ⅰ)2X+1的分布列;
(Ⅱ)|X-1|的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.
(1)若从这50个灯泡中随机抽取出1个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?
(2)若从这50个灯泡中随机抽取出2个灯泡(每个灯泡被取出的机会均等),这2个灯泡中是甲厂生产的一等品的个数记为ξ,求E(ξ)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.
(Ⅰ)求这4个人中恰好有2人去参加甲项目联欢的概率;
(Ⅱ)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率;
(Ⅲ)用分别表示这4个人中去参加甲、乙项目联欢的人数,记,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知盒子中有4个红球,2个白球,从中一次抓三个球
(1)求没有抓到白球的概率;
(2)记抓到球中的红球数为X ,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,且,则等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球中恰有1个红球的概率;
(Ⅱ)设“从甲盒内取出的2个球恰有1个为黑球”为事件A;“从乙盒内取出的2个球都是黑球”为事件B,求在事件A发生的条件下,事件B发生的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学对该校参加某项活动的志愿者实施“社会教育实施”学分考核,该大学考核只有合格和优秀两个等次.若某志愿者考核为合格,授予个学分;考核为优秀,授予个学分.假设该校志愿者甲、乙考核为优秀的概率分别为,乙考核合格且丙考核优秀的概率为.甲、乙、丙三人考核所得等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中,甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量
分布列和数学期望.

查看答案和解析>>

同步练习册答案