17£®ÒÑÖªÖ±Ïߣº$\left\{{\begin{array}{l}{x=tcos¦Á+3}\\{y={t}sin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©ºã¹ýÍÖÔ²$\left\{{\begin{array}{l}{x=5cos¦È}\\{y=msin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©µÄÓÒ½¹µãF£®
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÉèÖ±ÏßÓëÍÖÔ²½»ÓÚM£¬NÁ½µã£¬Çó|MF|•|NF|µÄ×î´óÖµ£®

·ÖÎö £¨1£©Ö±Ïß¹ý¶¨µã£¨3£¬0£©£¬Öª½¹µãF£¨3£¬0£©£¬¿ÉµÃÀëÐÄÂÊ£»
£¨2£©°ÑÖ±Ïß²ÎÊý·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåÇó|MF|•|NF|µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©Ö±Ïß¹ý¶¨µã£¨3£¬0£©£¬Öª½¹µãF£¨3£¬0£©£¬¹ÊÀëÐÄÂÊΪ$\frac{3}{5}$£¨5·Ö£©
£¨2£©°ÑÖ±Ïß²ÎÊý·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢µÃ£º16£¨tcos¦Á+3£©2+25£¨tsin¦Á£©2=25¡Á16£¬
»¯¼òµÃ£¨16cos2¦Á+25sin2¦Á£©t2+96tcos¦Á-32¡Á8=0£¬
¡à$|{{t_1}{t_2}}|=\frac{32¡Á8}{{16{{cos}^2}¦Á+25{{sin}^2}¦Á}}=\frac{32¡Á8}{{16+9{{sin}^2}¦Á}}¡Ü16$£¬
¡à|MF|•|NF|µÄ×î´óֵΪ16 £¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±Ïß¡¢ÍÖÔ²µÄ²ÎÊý·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²é²ÎÊý¼¸ºÎÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®²»µÈʽ×é$\left\{\begin{array}{l}x-3y+6£¾0\\ x-y+2¡Ü0\end{array}\right.$±íʾµÄÆ½ÃæÇøÓò£¨ÒõÓ°²¿·Ö£©ÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡Íµ×ÃæABCD£¬µ×ÃæABCDΪֱ½ÇÌÝÐΣ¬¡ÏABC=¡ÏDAB=$\frac{¦Ð}{2}$£¬ACÓëBD½»ÓÚµãO£¬BD¡ÍPC£¬AB=2$\sqrt{3}$£»£¬BC=2£¬PA=6£®
£¨I£©ÇóÖ¤£ºAC¡ÍBD£º
£¨¢ò£©ÈôQΪPAÉÏÒ»µã£¬ÇÒPC¡ÎÆ½ÃæBDQ£¬ÇóÈýÀâ×¶P-BDQµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É躯Êýf£¨x£©=£¨x-1£©2+alnx£¬a¡ÊR£®
£¨1£©ÈôÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßÓëÖ±Ïßx+2y-1=0´¹Ö±£¬ÇóaµÄÖµ£»
£¨2£©Çóº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨3£©Èôº¯Êýf£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2ÇÒx1£¼x2£¬Çóf£¨x2£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=e2£¨lnx+a-1£©£¨e=2.71828¡­Îª×ÔÈ»¶ÔÊýµÄµ×ÊýÔÚ¶¨ÒåÓòÉϵ¥µ÷µÝÔö£®
£¨1£©ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±ÊµÊýaÈ¡×îСֵʱ£¬Éè$g£¨x£©={e^{-x}}[f£¨x£©-1]+\frac{2}{ex}$£¬Ö¤Ã÷£º
¢Ù$g£¨x£©¡Ýmin\{y|y=g£¨x£©£¬x¡Ê[\frac{1}{2}£¬\frac{4}{7}]\}$£»
¢Ú$g£¨x£©+1£¾\frac{3}{56}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª$\frac{sin¦Â}{sin¦Á}=cos£¨¦Á+¦Â£©$£¬ÆäÖЦÁ£¬$¦Â¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬
£¨1£©ÇóÖ¤£º$tan¦Â=\frac{sin2¦Á}{3-cos2¦Á}$£»
£¨2£©Çótan¦ÂµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®³ÔÁãʳÊÇÖÐѧÉúÖÐÆÕ±é´æÔÚµÄÏÖÏ󣬳ÔÁãʳ¶ÔѧÉúÉíÌå·¢ÓýÓÐÖî¶à²»µÃÓ°Ï죬ӰÏìѧÉúµÄ½¡¿µ³É³¤£¬±í¸ñÊÇÐÔ±ðÓë³ÔÁãʳµÄÁÐÁª±í
ÄÐÅ®×ܼÆ
ϲ»¶³ÔÁãʳ51217
²»Ï²»¶³ÔÁãʳ402868
×ܼÆ454085
ÊÔ»­³öÁÐÁª±íµÄ¶þάÌõÐÎͼ²¢¼ÆËãÄãÓжà´ó°ÑÎÕÅжÏÐÔ±ðÓë³ÔÁãʳÊÇ·ñÓйأ¿
P£¨K2¡Ýk£©0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=x3-6x+5£¬x¡ÊR£®
£¨1£©Çóº¯Êýf£¨x£©ÔÚx=1´¦µÄÇÐÏß·½³Ì£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[-2£¬2]µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Çóº¯Êýy=2lnx•x2µÄµ¥µ÷Çø¼äºÍ¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸