精英家教网 > 高中数学 > 题目详情
8.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AC与BD交于点O,BD⊥PC,AB=2$\sqrt{3}$;,BC=2,PA=6.
(I)求证:AC⊥BD:
(Ⅱ)若Q为PA上一点,且PC∥平面BDQ,求三棱锥P-BDQ的体积.

分析 (Ⅰ)推导出PA⊥BD,BD⊥PC,从而BD⊥平面PAC,由此能证明AC⊥BD.
(Ⅱ)连结OQ,∵推导出PC∥OQ,AD=6,$\frac{PQ}{QA}=\frac{1}{3}$,由三棱锥P-BDQ的体积V=VP-ABD-VQ-ABD,能求出结果.

解答 证明:(Ⅰ)∵PA⊥底面ABCD,∴PA⊥BD,
又∵BD⊥PC,PA∩PC=P,
∴BD⊥平面PAC,
∵AC?平面PAC,
∴AC⊥BD.
解:(Ⅱ)连结OQ,∵PC∥平面BDQ,PC?平面PAC,
平面PAC∩平面BDQ=OQ,
∴PC∥OQ,
在直角梯形ABCD中,
∵AC⊥BD,AB=2$\sqrt{3}$,BC=2,∠ABC=∠DAB=$\frac{π}{2}$,
∴AC=$\sqrt{4+12}$=4,BO=$\frac{AB•BC}{AC}$=$\frac{2\sqrt{3}•2}{4}$=$\sqrt{3}$,
OC=$\sqrt{4-3}$=1,AO=4-1=3,
∵∠ABC=∠DAB=$\frac{π}{2}$,∴BC∥AD,∴△BCO∽△DAO,
∴$\frac{BC}{AD}=\frac{OC}{AO}$,∴AD=$\frac{BC•AO}{OC}=\frac{2×3}{1}$=6.
∴$\frac{CO}{OA}=\frac{1}{3}$,∴$\frac{PQ}{QA}=\frac{1}{3}$,
${V}_{P-ABD}=\frac{1}{3}{S}_{△ABD}•PA$=$\frac{1}{3}×(\frac{1}{2}×6×2\sqrt{3})×6$=12$\sqrt{3}$,
VQ-ABD=$\frac{3}{4}{V}_{P-ABD}$=9$\sqrt{3}$,
∴三棱锥P-BDQ的体积V=VP-ABD-VQ-ABD=3$\sqrt{3}$.

点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知焦点在y轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(  )
A.$\sqrt{17}$B.$\sqrt{15}$C.$\frac{\sqrt{17}}{4}$D.$\frac{\sqrt{15}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C=$\sqrt{3}$cosC,其中C为锐角.
(1)求角C的大小;
(2)a=1,b=4,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设直线l的方向向量是$\overrightarrow a$,平面α的法向量是$\overrightarrow n$,则“$\overrightarrow a⊥\overrightarrow n$”是“l∥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$\frac{2a+i}{1+i}$是纯虚数,则实数a=(  )
A.-1B.$\frac{1}{2}$C.lD.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A,B分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右顶点,点P是双曲线C上异于A,B的另外一点,且△ABP是顶角为120°的等腰三角形,则该双曲线的渐近线方程为(  )
A.$\sqrt{3}$x±y=0B.x±$\sqrt{3}$y=0C.x±y=0D.$\sqrt{2}$x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一只蚂蚁在边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均不小于1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线:$\left\{{\begin{array}{l}{x=tcosα+3}\\{y={t}sinα}\end{array}}\right.$(t为参数)恒过椭圆$\left\{{\begin{array}{l}{x=5cosθ}\\{y=msinθ}\end{array}}\right.$(θ为参数)的右焦点F.
(1)求椭圆的离心率;
(2)设直线与椭圆交于M,N两点,求|MF|•|NF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求值sin17°cos47°-sin73°cos43°=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案