精英家教网 > 高中数学 > 题目详情
18.求值sin17°cos47°-sin73°cos43°=-$\frac{1}{2}$.

分析 根据诱导公式将sin17°化为cos73°,cos47°化为sin43°再由两角差的正弦公式化简求值.

解答 解:sin17°cos47°-sin73°cos43°,
=cos73°sin43°-sin73°cos43°,
=sin(43°-73°),
=sin(-30°),
=-$\frac{1}{2}$.
故答案是:$-\frac{1}{2}$.

点评 本题考查诱导公式、两角差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AC与BD交于点O,BD⊥PC,AB=2$\sqrt{3}$;,BC=2,PA=6.
(I)求证:AC⊥BD:
(Ⅱ)若Q为PA上一点,且PC∥平面BDQ,求三棱锥P-BDQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不得影响,影响学生的健康成长,表格是性别与吃零食的列联表
总计
喜欢吃零食51217
不喜欢吃零食402868
总计454085
试画出列联表的二维条形图并计算你有多大把握判断性别与吃零食是否有关?
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)在x=1处的切线方程;
(2)求f(x)在区间[-2,2]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知复数z=2+i,则z4-4z3+6z2-4z-1=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若向量$\overrightarrow a=({1,2})$与$\overrightarrow b=({4,m})$的夹角为锐角,则m的取值范围是(-2,8)∪(8,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为(  )
A.1B.-2C.1或-2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=2lnx•x2的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(2-x) ex,曲线f(x)在x=0处的切线方程为l.
(1)求证:当x≥0时,f(x)图象在l下方;
(2)若n∈N*,求证:f($\frac{1}{n}$-$\frac{1}{n+1}$)+$\frac{1}{e^2}$f(2-$\frac{1}{n}$)≤2+$\frac{1}{n}$.

查看答案和解析>>

同步练习册答案