精英家教网 > 高中数学 > 题目详情
7.求函数y=2lnx•x2的单调区间和极值.

分析 首先考虑函数的定义域优先原则求出定义域,然后对函数求导,导函数小于等于零,函数是单调减函数,求出减区间,即可得到单调增区间,也可获得极值.

解答 解:由题意可知函数的定义域为:(0,+∞)
又f′(x)=4x•lnx+2•x2•$\frac{1}{x}$=4x•lnx+2x,
由f′(x)≤0知,2x•lnx+x≤0,
∴0≤x≤${e}^{-\frac{1}{2}}$,
又因为x>0,所以函数的递减区间是(0,${e}^{-\frac{1}{2}}$].函数的单调增区间为(${e}^{-\frac{1}{2}}$,+∞),
函数在x=${e}^{-\frac{1}{2}}$时函数取得极小值:y极小=f(${e}^{-\frac{1}{2}}$)=-$\frac{1}{e}$.

点评 此题考查的是函数的单调性和导数知识的综合问题.在解答过程当中充分体现了定义于优先的原则、求导的思想、问题转化的思想.值得同学们体会反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知直线:$\left\{{\begin{array}{l}{x=tcosα+3}\\{y={t}sinα}\end{array}}\right.$(t为参数)恒过椭圆$\left\{{\begin{array}{l}{x=5cosθ}\\{y=msinθ}\end{array}}\right.$(θ为参数)的右焦点F.
(1)求椭圆的离心率;
(2)设直线与椭圆交于M,N两点,求|MF|•|NF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求值sin17°cos47°-sin73°cos43°=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+$\frac{a}{x}$,其中a∈R.
(1)讨论函数g(x)=f′(x)-$\frac{x}{3}$的零点的个数;
(2)若函数φ(x)=xf(x)-a-$\frac{1}{2}$ax2-x有两个极值点x1,x2,且x1<x2,求证:x1x2>e2(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.求C1与C2交点的极坐标;(ρ<0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据关系见表:
x3456789
y66697381899091
已知$\sum_{i=1}^{?}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{?}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{?}$xiyi=3487.
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)判断纯利y与每天销售件数x之间是否线性相关,如果线性相关,求出回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sin(2x-$\frac{π}{6}$)-1(x∈R).
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下列数表:

设1025是该表第m行的第n个数,则m+n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,已知A(l,0),把一粒黄豆随机投到正方形OABC内,则黄豆落到阴影区域内的概率是(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案