精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2sin(2x-$\frac{π}{6}$)-1(x∈R).
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

分析 (Ⅰ)直接根据三角函数周期公式进行求解即可,根据正弦函数的减区间建立关系式,可求出函数f(x)的单调递减区间.
(Ⅱ)由$0≤x≤\frac{π}{2}$ 得$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,即可求f(x)的值域.

解答 解:(Ⅰ)函数f(x) 的最小正周期为π,…2分
又由$2kπ+\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{3π}{2},k∈z$ 得$kπ+\frac{π}{3}≤x≤2kπ+\frac{5π}{3},k∈z$,
所以函数的单调递减区间为:[k$π+\frac{π}{3}$,2kπ+$\frac{5π}{3}$](k∈Z)…5分
(Ⅱ)由$0≤x≤\frac{π}{2}$ 得$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,…7分
所以$-\frac{1}{2}≤sin({2x-\frac{π}{6}})≤1$ …10分
所以$-2≤2sin({2x-\frac{π}{6}})-1≤1$ …11分
所以值域:[-2,1]…12分

点评 本题考查了形如y=Asin(ωx+φ)的形式的周期性,以及最值的求解和函数的单调性.一般情况下,要研究形如y=Asin(ωx+φ)的形式的函数,都会将ωx+φ看作一个整体,利用正弦函数和余弦函数的图象和性质求解.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不得影响,影响学生的健康成长,表格是性别与吃零食的列联表
总计
喜欢吃零食51217
不喜欢吃零食402868
总计454085
试画出列联表的二维条形图并计算你有多大把握判断性别与吃零食是否有关?
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为(  )
A.1B.-2C.1或-2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=2lnx•x2的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设(2-x)5=a0+a1x+…+a5x5,那么a0的值为(  )
A.1B.16C.32D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=2sin(ωx+$\frac{π}{3}}$)(ω>0)的图象向右平移$\frac{π}{3ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在$[{-\frac{π}{3},\frac{π}{4}}]$上为增函数,则ω的最大值为(  )
A.1B.2C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),则f(x1+x2)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(2-x) ex,曲线f(x)在x=0处的切线方程为l.
(1)求证:当x≥0时,f(x)图象在l下方;
(2)若n∈N*,求证:f($\frac{1}{n}$-$\frac{1}{n+1}$)+$\frac{1}{e^2}$f(2-$\frac{1}{n}$)≤2+$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知四棱锥P-ABCD的侧棱长与底面边长都相等,四边形ABCD为正方形,点E是PB的中点,则异面直线AE与PD所成角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案