精英家教网 > 高中数学 > 题目详情
11.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),则f(x1+x2)=$\frac{\sqrt{3}}{2}$.

分析 由图象可得A=1,由周期公式可得ω=2,代入点(-$\frac{π}{6}$,0)可得φ的值,而可得f(x)=sin(2x+$\frac{π}{3}$),再由题意可得x1+x2=$\frac{π}{6}$,代入计算即可.

解答 解:根据题意,函数f(x)=Asin(ωx+φ)中,
A=1,周期T=2($\frac{π}{3}$-(-$\frac{π}{6}$))=π,
∴ω=2,
又函数图象过点(-$\frac{π}{6}$,0),
即2×(-$\frac{π}{6}$)+φ=2kπ,k∈Z,
∴φ=$\frac{π}{3}$+2kπ,k∈Z,
又|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$),
∴sin(2×$\frac{π}{12}$+$\frac{π}{3}$)=1,即图中最高点的坐标为($\frac{π}{12}$,1),
又x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),
∴x1+x2=$\frac{π}{12}$×2=$\frac{π}{6}$,
∴f(x1+x2)=sin(2×$\frac{π}{6}$+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查了三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\sqrt{3}$$\overrightarrow c=0$,则$\overrightarrow a\overrightarrow b+\overrightarrow b\overrightarrow c+\overrightarrow c\overrightarrow a$=$\frac{1}{2}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.求C1与C2交点的极坐标;(ρ<0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sin(2x-$\frac{π}{6}$)-1(x∈R).
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我们把平面几何里相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.下列几何体中,一定属于相似体的(  )
①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱椎.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下列数表:

设1025是该表第m行的第n个数,则m+n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图的程序框图,若输入的a=π-1,b=ln$\frac{1}{3}$,c=20.1,则输出的结果a为(  )
A.20.1B.ln$\frac{1}{3}$C.π-1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知关于x的方程3x2-2ax+a-1=0(x∈R).
(1)证明不论a取任何实数值,方程必有两个不相等的实数根;
(2)若两根x1,x2满足|x1-x2|=$\frac{2}{3}$,求a的值;
(3)若两根x1,x2满足x1<2且x2>2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=sin(ωx+$\frac{π}{6}$)(ω∈N*)经过点($\frac{2π}{9}$,$\frac{1}{2}$),则ω的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案