精英家教网 > 高中数学 > 题目详情
12.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据关系见表:
x3456789
y66697381899091
已知$\sum_{i=1}^{?}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{?}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{?}$xiyi=3487.
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)判断纯利y与每天销售件数x之间是否线性相关,如果线性相关,求出回归方程.

分析 (1)利用平均数公式计算即得.
(2)把所给的7对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.
(3)作出利用最小二乘法来求线性回归方程的系数的量,求出横标和纵标的平均数,求出系数,即可求出回归方程.

解答 解:(1)$\overline{x}$=$\frac{1}{7}$(3+4+5+6+7+8+9)=6,
$\overline{y}$=$\frac{1}{7}$(66+69+73+81+89+90+91)≈79.86;
(2)把所给的7对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.
(3)∵3×66+4×69+5×73+6×81+7×89+8×90+9×91=3487,
32+42+52+62+72+82+92=280,
∴$\stackrel{∧}{b}$=$\frac{3487-7×6×\frac{559}{7}}{280-7×36}$=4.75,$\stackrel{∧}{a}$=$\frac{559}{7}$-6×4.75≈51.36,
故线性回归方程为$\stackrel{∧}{y}$=4.75x+51.36.

点评 本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法做出线性回归方程的系数,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知$\frac{sinβ}{sinα}=cos(α+β)$,其中α,$β∈(0,\frac{π}{2})$,
(1)求证:$tanβ=\frac{sin2α}{3-cos2α}$;
(2)求tanβ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若向量$\overrightarrow a=({1,2})$与$\overrightarrow b=({4,m})$的夹角为锐角,则m的取值范围是(-2,8)∪(8,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=x2sinx的导函数为y′=2xsinx+x2cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=2lnx•x2的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.记实数x1,x2,…,xn中的最大数为max{x1,x2,…,xn},最小数为min{x1,x2,…,xn},则max{min{x+1,x2-x+1,-x+6}}=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=2sin(ωx+$\frac{π}{3}}$)(ω>0)的图象向右平移$\frac{π}{3ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在$[{-\frac{π}{3},\frac{π}{4}}]$上为增函数,则ω的最大值为(  )
A.1B.2C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设i为虚数单位,复数z=$\frac{2i}{1+i}$$,\overline z$为复数z的共轭复数,则$|{\overline z}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在三棱锥S-ABC中,底面是边长为1的等边三角形,侧棱长均为2,SO⊥底面ABC,O为垂足,则侧棱SA与底面ABC所成角的余弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

同步练习册答案