精英家教网 > 高中数学 > 题目详情
1.设i为虚数单位,复数z=$\frac{2i}{1+i}$$,\overline z$为复数z的共轭复数,则$|{\overline z}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.

解答 解:复数z=$\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}$=i+1$,\overline z$=1-i,则$|{\overline z}$|=$\sqrt{{1}^{2}+(-1)^{2}}$=$\sqrt{2}$.
故选:B.

点评 本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的极坐标方程为ρ=2cosθ-4sinθ,
(1)曲线C1与曲线C2交于两点A,B,求A,B两点之间的距离;
(2)设点M(x,y)为直角坐标系中曲线C2上任意一点,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据关系见表:
x3456789
y66697381899091
已知$\sum_{i=1}^{?}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{?}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{?}$xiyi=3487.
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)判断纯利y与每天销售件数x之间是否线性相关,如果线性相关,求出回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设n?N+,则5Cn1+52Cn2+53Cn3+…+5nCnn除以7的余数为0或5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下列数表:

设1025是该表第m行的第n个数,则m+n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知m∈R,函数f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{{log}_{2}(x-1),x>1}\end{array}\right.$,g(x)=x2-2x+2m-1,下列叙述中正确的有①②④
①函数y=f(f(x))有4个零点;
②若函数y=g(x)在(0,3)有零点,则-1<m≤1;
③当m≥-$\frac{1}{8}$时,函数y=f(x)+g(x)有2个零点;
④若函数y=f(g(x))-m有6个零点则实数m的取值范围是(0,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以C(4,-6)为圆心,半径等于4的圆的方程为(x-4)2+(y+6)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知随机变量X服从两点分布,E(X)=0.7,则其成功概率为(  )
A.0B.1C.0.3D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+$\frac{2}{x}$,其中a为实数.
(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;
(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并用定义证明.

查看答案和解析>>

同步练习册答案