精英家教网 > 高中数学 > 题目详情
17.如图所示,已知A(l,0),把一粒黄豆随机投到正方形OABC内,则黄豆落到阴影区域内的概率是(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 首先利用定积分求出阴影部分的面积,利用面积比求概率.

解答 解:由题意,阴影部分的面积为:${∫}_{0}^{1}(1-{x}^{2})dx$=(x-$\frac{1}{3}{x}^{3}$)${\;}_{0}^{1}$=$\frac{2}{3}$,
由几何概型的公式得黄豆落到阴影区域内的概率是到$\frac{\frac{2}{3}}{1×1}=\frac{2}{3}$;
故选:D.

点评 本题考查了定积分计算曲边梯形底面积以及几何概型的概率求法;属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求函数y=2lnx•x2的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(2-x) ex,曲线f(x)在x=0处的切线方程为l.
(1)求证:当x≥0时,f(x)图象在l下方;
(2)若n∈N*,求证:f($\frac{1}{n}$-$\frac{1}{n+1}$)+$\frac{1}{e^2}$f(2-$\frac{1}{n}$)≤2+$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x2+ax+b(a,b∈R).已知当|x|≤1时,|f(x)|≤1恒成立.
(1)若a=0,求实数b的取值范围;
(2)求a-3b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知{an},{bn}均为等差数列,其前n项和分别为Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+2}{n+3}$,则$\frac{{a}_{5}}{{b}_{5}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在三棱锥S-ABC中,底面是边长为1的等边三角形,侧棱长均为2,SO⊥底面ABC,O为垂足,则侧棱SA与底面ABC所成角的余弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知四棱锥P-ABCD的侧棱长与底面边长都相等,四边形ABCD为正方形,点E是PB的中点,则异面直线AE与PD所成角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知关于的不等式$\frac{ax-3}{{x}^{2}-a}$≤0的解集为M.
(1)若3∈M,且5∉M,求实数a的取值范围;
(2)若a>3,求集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线y=a分别与函数f(x)=2x+3,g(x)=x+lnx相交于P,Q两点,则|PQ|的最小值为2.

查看答案和解析>>

同步练习册答案