精英家教网 > 高中数学 > 题目详情
6.已知关于的不等式$\frac{ax-3}{{x}^{2}-a}$≤0的解集为M.
(1)若3∈M,且5∉M,求实数a的取值范围;
(2)若a>3,求集合M.

分析 (1)由题意可得$\frac{3a-3}{9-a}$≤0 ①,且 $\frac{5a-3}{25-a}$>0 ②,分别求得①和②的解集,再取交集,记得所求.
(2)由题意可得$\frac{3}{a}$<1,且 $\sqrt{a}$>$\frac{3}{a}$,不等式即$\frac{a(x-\frac{3}{a})}{(x-\sqrt{a})(x+\sqrt{a})}$≤0,用穿根法求得它的解集.

解答 解:(1)关于的不等式$\frac{ax-3}{{x}^{2}-a}$≤0的解集为M,若3∈M,且5∉M,
则有$\frac{3a-3}{9-a}$≤0 ①,且 $\frac{5a-3}{25-a}$>0 ②,解①求得 a≤1 或a>9,
解②求得 $\frac{3}{5}$<a<25,
故原不等式的解集为($\frac{3}{5}$,1]∪(9,25).
(2)若a>3,则由不等式$\frac{ax-3}{{x}^{2}-a}$≤0 可得$\frac{3}{a}$<1,且 $\sqrt{a}$>$\frac{3}{a}$,
不等式即$\frac{a(x-\frac{3}{a})}{(x-\sqrt{a})(x+\sqrt{a})}$≤0,
用穿根法求得它的解集为(-∞,-$\sqrt{a}$)∪[$\frac{a}{3}$,$\sqrt{a}$).
即集合M=(-∞,-$\sqrt{a}$)∪[$\frac{a}{3}$,$\sqrt{a}$).

点评 本题主要考查分式不等式、一元二次不等式的解法,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.观察下列数表:

设1025是该表第m行的第n个数,则m+n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,已知A(l,0),把一粒黄豆随机投到正方形OABC内,则黄豆落到阴影区域内的概率是(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个等比数列的前n项和为Sn=48,前2n项之和S2n=60,则S3n=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=sin(ωx+$\frac{π}{6}$)(ω∈N*)经过点($\frac{2π}{9}$,$\frac{1}{2}$),则ω的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+$\frac{2}{x}$,其中a为实数.
(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;
(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对任意实数x均有e2x-(a-3)ex+4-3a>0,则实数a的取值范围为a≤$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若输入a=16,A=1,S=0,n=1,执行如图所示的程序框图,则输出的结果为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{1}{{{{(|x-1|-a)}^2}}}$的定义域为D,其中a<1.
(1)当a=-3时,写出函数f(x)的单调区间(不要求证明);
(2)若对于任意的x∈[0,2]∩D,均有f(x)≥kx2成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案