精英家教网 > 高中数学 > 题目详情
14.正四棱柱ABCD-A1B1C1D1中,底面边长为2,截面AB1C1D与底面ABCD所成二面角的正切值为2,则B1点到平面AD1C的距离为(  )
A.$\frac{8}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{4}{3}$

分析 由AB1⊥AD,AB⊥AD,知∠BAB1是截面AB1C1D与底面ABCD所成二面角,由截面AB1C1D与底面ABCD所成二面角的正切值为2,求出BB1=2AB=4,以D为坐标原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出B1点到平面AD1C的距离.

解答 解:∵正四棱柱ABCD-A1B1C1D1中,底面边长为2,
∴AB1⊥AD,AB⊥AD,
∴∠BAB1是截面AB1C1D与底面ABCD所成二面角,
∵截面AB1C1D与底面ABCD所成二面角的正切值为2,
∴tan∠BAB1=$\frac{B{B}_{1}}{AB}$=2,∴BB1=2AB=4,
以D为坐标原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
A(2,0,0),C(0,2,0),D1(0,0,4),B1(2,2,4),
$\overrightarrow{A{D}_{1}}$=(-2,0,4),$\overrightarrow{AC}$=(-2,2,0),$\overrightarrow{A{B}_{1}}$=(0,2,4),
设平面AD1C的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{D}_{1}}=-2x+4z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=-2x+2y=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,2,1),
∴B1点到平面AD1C的距离:
d=$\frac{|\overrightarrow{n}•\overrightarrow{A{B}_{1}}|}{|\overrightarrow{n}|}$=$\frac{8}{3}$.
故选:A.

点评 本题考查点到平面的距离、二面角等基础知识,考查推理论证能力、运算求解能力、空间想象能力、数据处理能力,考查函数与方程思想、化归与转化思想、数形结合,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若sin(π+x)+cos(π+x)=$\frac{1}{2}$,则sin2x=-$\frac{3}{4}$,$\frac{1+tanx}{sinxcos(x-\frac{π}{4})}$=-$\frac{8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,抛物线的方程为x2=a2y,直线l:x-y-1=0过椭圆C的右焦点F且与抛物线相切.
(1)求椭圆C的方程;
(2)设A,B为抛物线上两个不同的点,l1,l2分别与抛物线相切于A,B,l1,l2相交于E点,弦AB的中点为D,求证:直线ED与x轴垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x与y之间的一组数据
x01m3
y135n
且x与y的线性回归方程的相关指数R2=1,则m-n=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=2cos({\frac{1}{2}x+\frac{π}{3}})$图象的一个对称中心为(  )
A.$({\frac{4π}{3},0})$B.$({\frac{π}{2},0})$C.$({\frac{π}{3},0})$D.$({\frac{π}{6},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|log3(2x-1)≤0},$B=\{x|y=\sqrt{3{x^2}-2x}\}$,全集U=R,则A∩(∁UB)等于(  )
A.$(\frac{1}{2},1]$B.$(0,\frac{2}{3})$C.$(\frac{2}{3},1]$D.$(\frac{1}{2},\frac{2}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.求函数$y=2sin(x+\frac{π}{6})-1$在区间$(0,\frac{2π}{3})$上的值域(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,A=$\frac{π}{3}$,AB=4,△ABC面积为2$\sqrt{3}$,则a=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x3-3x2的图象如图所示,求图中阴影部分的面积$\frac{27}{4}$.

查看答案和解析>>

同步练习册答案