(本小题满分14分)如图,在四棱锥中,平面平面,为等边三角形,底面为菱形,,为的中点,。
(1)求证:平面;
(2) 求四棱锥的体积
(3)在线段上是否存在点,使平面; 若存在,求出的值。
科目:高中数学 来源: 题型:解答题
(本题满分13分)如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径.
(Ⅰ)证明:平面平面;
(Ⅱ)设,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为.
(ⅰ)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面所成的角为,当取最大值时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平行六面体ABCD—A1B1C1D1中,AB=4,AD=3,AA1=5,∠BAD=90º ,
∠BAA1=∠DAA1=60º ,求AC1的长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题8分)如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE (2)平面PAC平面BDE
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共2小题,每小题6分,满分12分)
(1)已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图如图所示,其中,,,求直角梯形以BC为旋转轴旋转一周形成的几何体的表面积。
(2)定线段AB所在的直线与定平面α相交,P为直线AB外的一点,且P不在α内,若直线AP、BP与α分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
((本小题满分12分)
如图,多面体ABCD—EFG中,底面ABCD为正方形,GD//FC//AE,AE⊥平面ABCD,其正视图、俯视图如下:
(I)求证:平面AEF⊥平面BDG;
(II)若存在使得,二面角A—BG—K的大小为,求的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com