精英家教网 > 高中数学 > 题目详情

平行六面体ABCD—A1B1C1D1中,AB=4,AD=3,AA1=5,∠BAD=90º ,
∠BAA1=∠DAA1=60º ,求AC1的长。

解析试题分析:连接AC,∵AB=3,AD=3,∠BAD=90°,∴AC=5,根据cos∠A1AB=cos∠A1AC•cos∠CAB,即 =cos∠A1AC•,∴∠A1AC=45°则∠C1CA=135°,而AC=5,AA1=5,根据余弦定理得AC1=
考点:本题考查点、线、面间的距离计算;余弦定理。
点评:本题以平行六面体为载体,考查了空间想象能力,计算推理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,设矩形ABCD(AB>AD)的周长为24,把它关于AC折起来,AB折过去后,交DC于点P. 设AB="x," 求△的最大面积及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,垂直于⊙所在的平面,是⊙的直径,是⊙上一点,过点 作,垂足为.
求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在三棱锥中,
底面,点
分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知棱长为的正方体中,M,N分别是棱CD,AD的中点。(1)求证:四边形是梯形;(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
如图一,平面四边形关于直线对称,
沿折起(如图二),使二面角的余弦值等于。对于图二,

(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AB∥CD,BA⊥AD,且CD=2AB.

(1)若AB=AD=,直线PB与CD所成角为
①求四棱锥P-ABCD的体积;
②求二面角P-CD-B的大小;
(2)若E为线段PC上一点,试确定E点的位置,使得平面EBD垂直于平面ABCD,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四棱锥中,平面平面为等边三角形,底面为菱形,的中点,
 
(1)求证:平面;
(2) 求四棱锥的体积
(3)在线段上是否存在点,使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在直三棱柱ABC-A1B1C1中,△ABC为等腰三角形,∠BAC=90°,且AB=AA1,E、F分别为C1C、BC的中点。
(1)求证:B1F⊥平面AEF
(2)求二面角B1-AE-F的余弦值。

查看答案和解析>>

同步练习册答案