精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是定义在实数集R上的奇函数,且当x>0,f(x)+xf′(x)>0(其中f′(x)是f(x)的导函数),a={log
1
2
4}flog
1
2
4,b=
2
f(
2
)设c=(lg
1
5
),则a,b,c的大小关系是(  )
分析:我们可以令函数F(x)=xf(x),证明其为偶函数,再研究其单调性,分别求出a,b,c,再利用F(x)的单调性进行判断;
解答:解:令函数F(x)=xf(x),则函数
f(-x)=-f(x)
∴F(-x)=F(x),
F(x)=xf(x)为偶函数.
当x>0时,F′(x)=f(x)+xf′(x)>0,此时函数递增,
a=F(log
1
2
4)=F(-log24)=F(-2)=F(2)

b=F(
2
)

c=F(lg
1
5
)=F(-lg5)=F(lg5)

因为0<lg5<1<
2
<2

所以a>b>c,
故选C.
点评:此题主要考查对数函数的性质及其图象,以及利用函数的单调性进行比较数的大小关系,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案