【题目】已知定义在
上的函数
满足:函数
的图象关于直线
对称,且当
时
是函数
的导函数)成立.若
,则
的大小关系是
A.
B.
C.
D. ![]()
【答案】C
【解析】
函数
的图象关于直线
对称,向左平移一个单位后得到函数
的图象,
关于
轴对称,
为偶函数,
函数
为奇函数,
,
当
时,
,
函数
在
上单调递减,当
时,函数
上单调递减,
,
,
,即
,故选A.
【方法点睛】本题主要考察抽象函数的单调性以及函数的求导法则,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.本题通过观察四个选项,联想到函数
,再结合条件判断出其单调性,进而得出正确结论.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(Ⅰ) 求证:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(Ⅲ) 求点D到平面PAM的距离. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
经过点
,倾斜角为
.在以原点为极点,
轴正半轴为极轴的极坐标系中,曲线
的方程为
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)设直线
与曲线
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如: ![]()
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )
A.289
B.1024
C.1225
D.1378
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=n2﹣n,数列{bn}的前n项和Tn=4﹣bn .
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
anbn , 求数列{cn}的前n项和Rn的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面是正方形,每条侧棱的长都是底面边长的
倍,
为侧棱
上的点.
![]()
(1)求证:
.
(2)若
⊥平面
,求二面角
的大小.
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com