【题目】对正整数n,记In={1,2,3…,n},Pn={ |m∈In , k∈In}.
(1)求集合P7中元素的个数;
(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.
【答案】
(1)解:对于集合P7,有n=7.
当k=1时,m=1,2,3…,7,Pn={1,2,3…,7},7个数,
当k=2时,m=1,2,3…,7,Pn对应有7个数,
当k=3时,m=1,2,3…,7,Pn对应有7个数,
当k=4时,Pn={ |m∈In,k∈In}=Pn={ ,1, ,2, ,3, }中有3个数(1,2,3)
与k=1时Pn中的数重复,
当k=5时,m=1,2,3…,7,Pn对应有7个数,
当k=6时,m=1,2,3…,7,Pn对应有7个数,
当k=7时,m=1,2,3…,7,Pn对应有7个数,
由此求得集合P7中元素的个数为 7×7﹣3=46
(2)解:先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.假设当n≥15时,
Pn可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=PnIn.
不妨设1∈A,则由于1+3=22,∴3A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,
但1+15=42,这与A为稀疏集相矛盾.
再证P14满足要求.当k=1时,P14={ |m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.
事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},
则A1和B1都是稀疏集,且A1∪B1=I14.
当k=4时,集合{ |m∈I14}中,除整数外,剩下的数组成集合{ , , ,…, },
可以分为下列3个稀疏集的并:
A2={ , , , },B2={ , , }.
当k=9时,集合{ |m∈I14}中,除整数外,剩下的数组成集合{ , , , ,…, , },
可以分为下列3个稀疏集的并:
A3={ , , , , },B3={ , , , , }.
最后,集合C═{ |m∈I14,k∈I14,且k≠1,4,9}中的数的分母都是无理数,
它与Pn中的任何其他数之和都不是整数,
因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.
综上可得,n的最大值为14
【解析】(1)对于集合P7 , 有n=7.当k=4时,根据Pn中有3个数与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,Pn不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.
科目:高中数学 来源: 题型:
【题目】李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);
场次 | 投篮次数 | 命中次数 | 场次 | 投篮次数 | 命中次数 |
主场1 | 22 | 12 | 客场1 | 18 | 8 |
主场2 | 15 | 12 | 客场2 | 13 | 12 |
主场3 | 12 | 8 | 客场3 | 21 | 7 |
主场4 | 23 | 8 | 客场4 | 18 | 15 |
主场5 | 24 | 20 | 客场5 | 25 | 12 |
(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与 的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 | 摸出红、蓝球个数 | 获奖金额 |
一等奖 | 3红1蓝 | 200元 |
二等奖 | 3红0蓝 | 50元 |
三等奖 | 2红1蓝 | 10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC,P0是边AB上一定点,满足 ,且对于边AB上任一点P,恒有 则( )
A.∠ABC=90°
B.∠BAC=90°
C.AB=AC
D.AC=BC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中x、y的值;
(2)根据样本直方图估计所取样本的中位数及平均数(同一组数据用该区间的中点值作代表).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com