精英家教网 > 高中数学 > 题目详情
已知在等差数列{an}中,a2=11,a5=5.
(1)求通项公式an;     
(2)求前n项和Sn的最大值.
分析:(1)设等差数列{an}的公差为d,可得 
a1+d=11
a1+4d=5
,解之代入通项公式可得;(2)由(1)可得Sn=-(n-7)2+49,由二次函数的最值可得.
解答:解:(1)设等差数列{an}的公差为d,
则 
a1+d=11
a1+4d=5
,解得
a1=13
d=-2

∴an=13+(n-1)(-2)=-2n+15
(2)由(1)可得Sn=13n+
n(n-1)
2
(-2)

=-n2+14n=-(n-7)2+49
当n=7时,Sn有最大值,为S7=49
点评:本题考查等差数列的通项公式和求和公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在等差数列{an}中,a1=120,d=-4,若Sn≤an(n≥2),则n的最小值为(  )
A、60B、62C、70D、72

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,若a2与2的等差中项等于S2与2的等比中项,且S3=18.
求:
(1)求此数列的通项公式;
(2)求该数列的第10项到第20项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中3a2=7a7,a1>0,则下列说法正确的是(  )
A、a11>0B、S10为Sn的最大值C、d>0D、S4>S16

查看答案和解析>>

同步练习册答案