精英家教网 > 高中数学 > 题目详情

已知E,F,G,H分别是空间四边形四条边AB,BC,CD,DA的中点,
(1)求证四边形EFGH是平行四边形
(2)若AC⊥BD时,求证:EFGH为矩形;
(3)若AC、BD成30°角,AC=6,BD=4,求四边形EFGH的面积;
(4)若AB=BC=CD=DA=AC=BD=2,求AC与BD间的距离.

解:(1)∵E,F是边AB,BC的中点,∴EF∥AC,EF=AC,同理GH∥AC,GH=AC,∴四边形EFGH是平行四边形
(2)∵AC∥EF,BD∥FG,若AC⊥BD,则EF⊥FG,结合(1)可知EFGH为矩形.
(3)∵AC∥EF,BD∥FG,∴EF与FG所成的角即为AC、BD所成的角,∴∠EFG(或其补角)=30°,S EFGH =EF×FG×sin∠EFG=AC×BD×sin30°=3
(4)设M,N分别为BD,AC中点,连接MA,MC,MN.则AM⊥BD,CM⊥BD,∴BD⊥面AMC,BD⊆MN,易知AM=CM=,∴MN⊥AC,∴MN是BD,AC的公垂线段,MN的长即为所求距离.
在直角三角形AMN中,MN==
分析:(1)根据三角形中位线定理易证EF∥AC,EF=AC,同理GH∥AC,GH=AC,所以四边形EFGH是平行四边形
(2)AC⊥BD等价于EF⊥FG,结合(1)可知EFGH为矩形.
(3)由于AC∥EF,BD∥FG,所以得出EF与FG所成的角即为AC、BD所成的角,EFGH中有一内角为30°,利用平行四边形面积公式S=absinθ计算即可.
(4)设M,N分别为BD,AC中点,可以证明MN是BD,AC的公垂线段,在直角三角形AMN中求出MN即可.
点评:本题考查空间直线和直线,直线和平面的位置关系的判定,异面直线的夹角和距离求解,考查了空间想象能力、计算能力,分析解决问题能力.空间问题平面化是解决空间几何体问题最主要的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.
(1)用向量法证明E,F,G,H(2)四点共面;
(2)用向量法证明:BD∥平面EFGH;
(3)设M是EG和FH的交点,求证:对空间任一点O,有
OM
=
1
4
(
OA
+
OB
+
OC
+
OD
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知E、F、G、H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.
(1)证明E,F,G,H四点共面;
(2)证明BD∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体AC1中,已知E、F、G、H分别是CC1、BC、CD和A1C1的中点.证明:
(1)AB1∥GE,AB1⊥EH;
(2)A1G⊥平面EFD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知EF、G、H分别是空间四边形ABCDABBCCDDA的中点.

(1)用向量法证明EF、G、H四点共面;

(2)用向量法证明BD∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学选修2-1 3.1空间向量及其坐标运算练习卷(解析版) 题型:解答题

已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,

(1)求证:E、F、G、H四点共面;

(2)求证:BD∥平面EFGH;

(3)设M是EG和FH的交点,求证:对空间任一点O,有=+++).

 

查看答案和解析>>

同步练习册答案