精英家教网 > 高中数学 > 题目详情

【题目】(用数字作答)从5本不同的故事书和4本不同的数学书中选出4本,送给4位同学,每人1本,问:

1)如果故事书和数学书各选2本,共有多少种不同的送法?

2)如果故事书甲和数学书乙必须送出,共有多少种不同的送法?

【答案】11440;(2504.

【解析】

1)由分步乘法计数原理可得共有种送法,计算即可得解;

2)由分步乘法的计数原理可得共有种送法,计算即可得解.

1)由题意可知,5本不同的故事书中任选2本有种选择,4本不同的数学书中任选2本有种选择,4个不同的学生又有种选择,

因此由乘法计数原理得共有种不同的送法;

2)如果故事书甲和数学书乙必须送出,则需要从剩余7本中选2本书即种选择,4个不同的学生又有种选择,

因此由乘法计数原理得共有种不同的送法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 命题都是假命题,则命题“”为真命题.

B. ,函数都不是奇函数.

C. 函数的图像关于对称 .

D. 将函数的图像上所有点的横坐标伸长到原来的2倍后得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线是曲线的一条切线

(1)求实数a的值;

(2)若对任意的x(0,),都有,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.

1)求数列的通项公式;

2)记为数列的前项和,若不等式对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过坐标原点的直线l与圆Cx2+y28x+120相交于不同的两点AB

1)求线段AB的中点P的轨迹M的方程.

2)是否存在实数k,使得直线l1ykx5)与曲线M有且仅有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年国庆黄金周旅游市场依旧火爆.一旅行社为某旅行团包机旅游,其中旅行社的包机费15000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行团人数不超过35人,飞机票每张800元;若旅行团人数多于35人,则给予如下优惠:每多1每张机票减少10,但旅行团的人数最多不超过60人,记旅行团人数为每个人的机票钱为y.

1)写出的关系式.

2)求旅行社获得的利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有标号为张标签,随机的选取两张标签.

1)若标签的选取是无放回的,求两张标签上的数字为相邻整数的概率;

2)若标签的选取是有放回的,求两张标签上的数字至少有一个为5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnx

1)若a4,求函数fx)的单调区间;

2)若函数fx)在区间(01]内单调递增,求实数a的取值范围;

3)若x1x2R+,且x1x2,求证:(lnx1lnx2)(x1+2x2≤3x1x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线 .

(1)求证:对,直线与圆总有两个不同的交点

(2)求弦的中点的轨迹方程,并说明其轨迹是什么曲线;

(3)是否存在实数,使得原上有四点到直线的距离为?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案