精英家教网 > 高中数学 > 题目详情
已知a>b>1,且logab+logba=
103
,则logab-logba=
 
分析:利用换底公式,由方程求出logab,然后代入logab-logba求解即可.
解答:解:logab+logba=
10
3
令x=logab
所以3x2-10x+3=0解得 x=3 或x=
1
3

因为a>b>1,所以x=
1
3

logab-logba=
1
3
-3=-
8
3

故答案为:-
8
3
点评:本题考查换底公式的应用,对数的运算性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C为直线l上三点,且AB=BC=a;P为l外一点,且∠APB=90°,∠BPC=45°,求
(1)∠PBA的正弦、余弦、正切;
(2)PB的长;
(3)P点到l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是直线l上的不同的三点,O是外一点,则向量
OA
OB
OC
满足:
OA
OB
OC
,其中λ+μ=1.
(1)若A、B、C三点共线且有
OA
-(3x+1)•
OB
-(
3
2+3x
-y)•
OC
=
0
成立.记y=f(x),求函数y=f(x)的解析式;
(2)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
,直线l的参数方程为
x=1+2t
y=1+t
(t为参数),则直线l被曲线C截得的弦长为
4
4

(2)已知a,b为正数,且直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,则2a+3b的最小值为
25
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是直线l上的三点,且
OA
OB
OC
满足:
OA
-(y+1-lnx)
OB
+
1-x
ax
OC
=
0
(O∉l且a>0)

(1)求y=f(x)的解析式;
(2)若f(x)在[1,+∞)单调递增,求实数a的范围;
(3)当a=1时,求证:lnn>
1
2
+
1
3
+
1
4
+…+
1
n
.(n≥2且n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知A、B、C是直线l上的三点,向量满足:-[y+2f′(1)]+ln(x+1) =0,函数g(x)=+af(x).

(1)求函数y=f(x)的表达式;

(2)若g(x)在点(3,g(3))处的切线与直线7x-18y+3=0平行,求函数g(x)的极值;

(3)若函数g(x)在(0,2)上单调递减,求实数a的取值范围.

(文)已知A、B、C是直线l上的三点,且满足:-(y+ax2)+(x3+3x)=0.

(1)若f(x)在点(1,f(3))处的切线与直线2x+y+3=0平行,求函数y=f(x)的极值;

(2)若函数y=f(x)在(-2,)上单调递减,求实数口的取值范围.

查看答案和解析>>

同步练习册答案