精英家教网 > 高中数学 > 题目详情
函数f(x)=(
1
2
)x(1<x≤2)
的反函数为f-1(x)=(  )
分析:y=(
1
2
)
x
(1<x≤2)
得到
1
4
≤y<
1
2
,且x=log
1
2
y,再x,y互换,得到原函数的反函数y=-log2x(
1
4
≤x<
1
2
)
解答:解:∵f(x)=(
1
2
)
x
(1<x≤2)

1
4
≤y<
1
2

且(
1
2
x=y,
x=log 
1
2
y,即x=-log2y,
x,y互换,得到函数y=(
1
2
)
x
(1<x≤2)
的反函数y=-log2x(
1
4
≤x<
1
2
)

∴f -1(x)=-log2x(
1
4
≤x<
1
2
)

故选C.
点评:本题考查指数函数的反函数的求法,解题时要认真审题,仔细解答,注意对数函数和指数函数的相互转化,反函数的定义域是原函数的值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)
x
-7
(x<0)
x
(x≥0)
,若f(a)<1
,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
(
1
2
)
x
-1
的定义域是
{x|x≤0}
{x|x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)已知函数f(x)=
(
1
2
)
x
+
3
4
x≥2
log2x,0<x<2
若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是
3
4
,1)
3
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的单调区间;
(2)若x∈[
1
e
-1,e-1]
时,f(x)<m恒成立,求m的取值范围;
(3)若设函数g(x)=
1
2
x2+
1
2
x+a
,若g(x)的图象与f(x)的图象在区间[0,2]上有两个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
+log2
x
1-x
,设Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)
,n∈N*,且n≥2.
(1)求Sn
(2)已知a1=
2
3
an=
1
(Sn+1)(Sn+1+1)
,(n≥2,n∈N*),数列{an}的前n项和为Tn,若Tn<λ(Sn+1+1)对一切n∈N*都成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案