精英家教网 > 高中数学 > 题目详情
20.函数f(x)=$\left\{{\begin{array}{l}{2x-{5^{\;}}(x≥2)}\\{f{{(x+2)}^{\;}}(x<2)}\end{array}}$,则f(-2)=-1.

分析 利用分段函数性质求解.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{2x-{5^{\;}}(x≥2)}\\{f{{(x+2)}^{\;}}(x<2)}\end{array}}$,
∴f(-2)=f(0)=f(2)=2×2-5=-1.
故答案为:-1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知定义在R上的函数g(x)=f(x)-x3,且g(x)为奇函数
(1)判断函数f(x)的奇偶性;
(2)若x>0时,f(x)=2x,求当x<0时,函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}的递项公式an=(-1)n•2n+n•cos(nπ),其前n项和为Sn,则S10等于687.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线经过点A(2,-3)、B(1,4),则直线的斜截式方程为y=-7x+11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线l1:2x-y=4与直线l2:x-2y=-1相交,其交点P的坐标为(  )
A.(2,1)B.$(\frac{7}{3},\frac{2}{3})$C.(1,1)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=x2-2ax+1(a∈R)的图象如图所示,则下列函数与它的图象对应正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos(α-β)=$\frac{1}{7}$,cos2α=-$\frac{11}{14}$,求证:α+β=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在求由曲线y=$\frac{1}{x}$与直线x=1,x=3,y=0所围成图形的面积时,若将区间n等分,并用每个区间的右端点的函数值近似代替,则第i个小曲边梯形的面积△Si约等于(  )
A.$\frac{2}{n+2i}$B.$\frac{2}{n+2i-2}$C.$\frac{2}{n(n+2i)}$D.$\frac{1}{n+2i}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=3,则$\frac{4cosα-2sinα}{3cosα+sinα}$=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案