(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.
(1) 45°;(2) 点Q是线段PB的中点
【解析】(1)利用向量法求解,先建系,然后求出二面角两个面的法向量,再根据法向量的夹角与二面角相等或互补来解.
(2)易证PC,因为E为PC的中点,所以当Q为PB的中点时,PC⊥平面ADQ.也可利用向量法推证.
解:(1)建立如图所示空间直角坐标系,设平面GEF的一个法向量为n=(x,y,z),则
取n=(1,0,1) …………4分
又平面EFD的法向量为m=(1,0,0)
∴cos<m,n> = …………6分
∴<m,n>=45° …………7分
(2)设=λ (0<λ<1)
则=+=(-2+2λ,2λ,2-2λ) …………9分
∵AQ⊥PC ó ·=0 ó 2×2λ-2(2-2λ)=0
ó λ= …………11分
又AD⊥PC,∴PC⊥平面ADQ ó λ=
ó 点Q是线段PB的中点. …………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com