精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+3
-
3-x
,求f(x)的定义域及值域.
考点:函数的定义域及其求法,函数的值域
专题:函数的性质及应用
分析:根据函数成立的条件即可求出函数的定义域和值域.
解答: 解:要使函数f(x)有意义,则
x+3≥0
3-x≥0

x≥-3
x≤3

解得-3≤x≤3,故函数的定义域是[-3,3],
∵函数f(x)=
x+3
-
3-x
在x∈[-3,3]上为增函数,
∴f(-3)≤f(x)≤f(3),
即-
6
≤f(x)≤
6

故函数的值域[-
6
6
].
点评:本题主要考查函数定义域和值域的求解,要求熟练掌握常见函数成立的条件以及函数值域的求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的偶函数,对于任意x∈R都f(x+6)=f(x)+f(3)成立;当x1,x2∈[0,3],且x1≠x2时,都有
f(x1)-f(x2)
x1-x2
>0.给出下列四个命题:
①f(3)=0;
②直线x=-6是函数y=f(x)图象的一条对称轴;
③函数y=f(x)在[-9,-6]上为增函数;
④函数y=f(x)在[0,2014]上有335个零点.
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在D上的函数f(x),如果满足:对?x∈D,存在常数M>0,都有|f(x)|<M成立,则称f(x)是D上的有界函数.则下列定义在R上的函数中,不是有界函数的是(  )
A、f(x)=sinx2
B、f(x)=
1
x2+1
C、f(x)=-21-|x|
D、f(x)=-log2(1+|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x.
(1)求函数f(x+1)的表达式.
(2)求函数f(x+1)的值域.
(3)求函数f(x)=x2+2x在区间[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=
2
时,求直线CD的方程;
(3)经过A,P,M三点的圆是否经过异于点M的定点,若经过,请求出此定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=cos(x+
2
3
π)+2cos2
x
2

(1)求f(x)在x∈[0,π]上的值域;
(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(-
3
,-1),
m
n
,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx,(x∈R) 最大值及取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x|5x2-2x-3<0},B={x|2x2+3x-2≤0}.求A∩B,A∪B?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(2,1).
(1)若|
a
|=|
b
|,
π
4
<θ<π,求θ的值;
(2)若
a
b
,求tanθ的值.

查看答案和解析>>

同步练习册答案