(2013•绍兴一模)如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于( )
![]()
A.
B.
C.
D.![]()
A
【解析】
试题分析:由题意,可得当O、B、A、C四点共面时顶点A与点O的距离最大,设此平面为β.由面面垂直判定定理结合BO⊥α,证出β⊥α.过D作DE⊥α于E,连结CE,根据面面垂直与线面垂直的性质证出DH∥α,从而点D到平面α的距离等于点H到平面α的距离.设正四面体ABCD的棱长为1,根据BC与平面α所成角为45°和正四面体的性质算出H到平面α的距离,从而在Rt△CDE中,利用三角函数的定义算出sin∠DCE=
,即得直线CD与平面α所成角的正弦值.
【解析】
∵四边形OBAC中,顶点A与点O的距离最大,
∴O、B、A、C四点共面,设此平面为β
∵BO⊥α,BO?β,∴β⊥α
过D作DH⊥平面ABC,垂足为H,
设正四面体ABCD的棱长为1,则Rt△HCD中,CH=
BC=![]()
∵BO⊥α,直线BC与平面α所成角为45°,
∴∠BCO=45°,结合∠HCB=30°得∠HCO=75°
因此,H到平面α的距离等于HCsin75°=
×
=![]()
过D作DE⊥α于E,连结CE,则∠DCE就是直线CD与平面α所成角
∵DH⊥β,α⊥β且DH?α,∴DH∥α
由此可得点D到平面α的距离等于点H到平面α的距离,即DE=![]()
∴Rt△CDE中,sin∠DCE=
=
,即直线CD与平面α所成角的正弦值等于![]()
故选:A
![]()
科目:高中数学 来源:2014-2015学年甘肃省高二上学期第四次月考理科数学试卷(解析版) 题型:选择题
已知双曲线
与抛物线
有一个公共的焦点
,且两曲线的一个交点为
,若
,则双曲线的渐近线方程为( )
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-2 4.2导数的运算练习卷(解析版) 题型:?????
(2014•重庆三模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=![]()
,则g(
)+
=( )
A.2011 B.2012 C.2013 D.2014
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.9共面与平行练习卷(解析版) 题型:?????
已知
=(1,5,﹣2),
=(3,1,z),若
⊥
,
=(x﹣1,y,﹣3),且BP⊥平面ABC,则实数x、y、z分别为( )
A.
,﹣
,4 B.
,﹣
,4 C.
,﹣2,4 D.4,
,﹣15
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.9共面与平行练习卷(解析版) 题型:?????
如图,单位正方体ABCD﹣A1B1C1D1中,下列说法错误的是( )
![]()
A.BD1⊥B1C
B.若
,则PE∥A1B
C.若点B1、A、D、C在球心为O的球面上,则点A、C在该球面上的球面距离为![]()
D.若
,则A1P、BE、AD三线共点
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.5直线与平面的垂直关系练习卷(解析版) 题型:?????
(2012•资阳三模)△ABC和△DBC所在的平面相互垂直,且AB=BC=BD,∠CBA=∠DBC=120°,则AD和平面BCD所成的角为( )
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.5直线与平面的垂直关系练习卷(解析版) 题型:?????
(2014•嘉兴一模)如图1,在等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′﹣BCDE.若A′O⊥平面BCDE,则A′D与平面A′BC所成角的正弦值等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:[同步]2014年湘教版选修2-1 3.1尝试用向量处理空间图形练习卷(解析版) 题型:?????
已知正方体ABCD﹣A′B′C′D′中,点F是侧面CDD′C′的中心,若
=
+x
+y
,则x﹣y等于( )
A.0 B.1 C.
D.﹣![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com