精英家教网 > 高中数学 > 题目详情
已知向量
m
=(cos2x,
3
),
n
=(2,sin2x),函数f(x)=
m
n

(1)求f(x)的单调递增区间;
(2)△ABC中,a,b,c分别是角A,B,C的对边,f(C)=3,c=1,S△ABC=
3
2
,且a>b,求a,b.
(1)∵向量
m
=(cos2x,
3
),
n
=(2,sin2x),函数f(x)=
m
n

∴f(x)=2cos2x+
3
sin2x=cos2x+1+
3
sin2x=2sin(2x+
π
6
)+1
2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z,则kπ-
π
3
≤x≤kπ+
π
6

∴f(x)的单调递增区间为[kπ-
π
3
kπ+
π
6
],k∈Z;
(2)f(C)=2sin(2C+
π
6
)+1=3,∴sin(2C+
π
6
)=1
∵C是△ABC的内角,
∴2C+
π
6
=
π
2
,即C=
π
6

∴cosC=
a2+b2-c2
2ab
=
3
2

∵S△ABC=
3
2
,∴
1
2
absin
π
6
=
3
2
,∴ab=2
3

∵c=1,∴a2+
12
a2
=7

∴a2=3或a2=4
∵a>b,
∴a=2,b=
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈[π,2π].
(1)求|
m
+
n
|的最大值;
(2)当|
m
+
n
|=
8
2
5
时,求cos(
θ
2
+
π
8
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈(π,2π)且|
m
+
n
|=
8
2
5
,则cos(
θ
2
+
π
8
)
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
m
=(cosωx,sinωx),
.
n
=(cosωx,2
3
cosωx-sinωx),ω>0,函数f(x)=
.
m
.
n
+|
.
m
|,且函数f(x)图象的相邻两条对称轴之间的距离为
π
2

(1)作出函数y=f(x)-1在[0,π]上的图象
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,c=2,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫东、豫北十所名校高三测试理科数学试卷(解析版) 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cos A,cos B),n=(2c+b,a),且m⊥n.

    (I)求角A的大小;

    (Ⅱ)若a=4,求△ABC面积的最大值.

 

查看答案和解析>>

同步练习册答案