精英家教网 > 高中数学 > 题目详情
5.已知集合A={x||x-1|≤2},B={x|a<x<a+3},满足A∩B=B,则实数a的取值范围是[-1,0].

分析 表示出A中绝对值不等式的解集,根据A与B的交集为B,得到B为A的子集,即可确定出a的范围.

解答 解:A={x||x-1|≤2}={x|-1≤x≤3},B={x|a<x<a+3},
∵A∩B=B,
∴B⊆A,
∴$\left\{\begin{array}{l}{a≥-1}\\{a+3≤3}\end{array}\right.$,
解得-1≤a≤0,
故答案为:[-1,0].

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|2<x<4},B={x|(x-a)(x-3a)<0},C={x|-4<x<6}.
(1)若A?B,求实数a的取值范围;
(2)若B⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A,B,C,D是空间中的四个不同的点,则下列说法错误的是(  )
A.若AC与BD共面,则AD与BC也共面
B.若AC与BD是异面直线,则AD与BC也是异面直线
C.若AC与BD是相交直线,则AD与BC也是相交直线
D.若A,B,C,D不共面,则AC与BD既不平行也不相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若直线L:y=kx-2交抛物线y2=8x于A、B两点,且AB的中点为M(2,y0),求y0及弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,P是△ABC所在平面外的一点,A1,B1,C1依次是△PBC,△PAC,△PAB的重心,AR是平面ABC内的任意一条直线,求证:AR∥平面A1B1C1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x+cos2x(x∈R).
(Ⅰ)求函数f(x)的最小正周期、最大值及取得最大值时x的集合、对称轴、对称中心和单调递增区间;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{6},\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(2x-1)的定义域为[-1,1],求函数y=f(x-2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.经过同一直线上的3个点的平面(  )
A.有且只有一个B.有且只有3个C.有无数个D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.M是抛物线y2=2x上-点,P点坐标为(3,$\frac{10}{3}$),设d是点M到准线的距离,要使d+|MP|最小,则点M的坐标为(2,2).

查看答案和解析>>

同步练习册答案