精英家教网 > 高中数学 > 题目详情

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x
3
4
5
6
y
2.5
3
4
4.5
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=bx+a.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

(1) 如图

(2) =0.7x+0.35    (3) 19.65

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:

分组
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
频数
 
12
 
63
 
86
 
182
 
92
 
61
 
4
 
乙厂:
分组
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
频数
 
29
 
71
 
85
 
159
 
76
 
62
 
18
 
 
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?
 
 
甲厂
 
乙厂
 
合计
 
优质品
 
 
 
 
 
 
 
非优质品
 
 
 
 
 
 
 
合 计
 
 
 
 
 
 
 
附:
P(χ2≥x0)
 
0.05
 
0.01
 
x0
 
3.841
 
6.635
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:,,,,分别加以统计,得到如图所示的频率分布直方图.


(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有的把握认为“生产能手与工人所在的年龄组有关”?

附表:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的次预赛成绩记录如下: 
甲                    乙               
(1)用茎叶图表示这两组数据;
(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(3)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,
根据你的计算结果,你认为选派哪位学生参加合适?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

衡水某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人数)
3
6
11
18
12
乙班
(人数)
4
8
13
15
10
现规定平均成绩在80分以上(不含80分)的为优秀.
(1)试分别估计两个班级的优秀率.
(2)由以上统计数据填写下面2×2列联表,并判断“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”是否有帮助?
 
优秀人数
非优秀人数
总计
甲班
 
 
 
乙班
 
 
 
总计
 
 
 
参考公式及数据:K2=,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图.

(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,估计12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据.
(2)现要从中选派一人参加数学竞赛,从稳定性的角度考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某次数学考试中,抽查了1000名学生的成绩,得到频率分布直方图如图所示,规定85分及其以上为优秀.

(1)下表是这次抽查成绩的频数分布表,试求正整数的值;

区间
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
人数
50
a
350
300
b
(2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求抽取成绩为优秀的学生人数;
(3)在根据(2)抽取的40名学生中,要随机选取2名学生参加座谈会,记其中成绩为优秀的人数为X,求X的分布列与数学期望(即均值).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:


7
7
7.5
9
9.5

6

8.5
8.5

由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.
(Ⅰ)求表格中的值;
(Ⅱ)若从被检测的5件种元件中任取2件,求2件都为正品的概率.

查看答案和解析>>

同步练习册答案