精英家教网 > 高中数学 > 题目详情

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据.
(2)现要从中选派一人参加数学竞赛,从稳定性的角度考虑,你认为选派哪位学生参加合适?请说明理由.

(1)见解析   (2) 派甲参赛比较合适.理由见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

从发生汽车碰撞事故的司机中抽取2 000名司机.根据他们的血液中是否含有酒精以及他们是否对事故负有责任.将数据整理如下:

 
有责任
无责任
合计
有酒精
650
150
800
无酒精
700
500
1 200
合计
1 350
650
2 000
那么,司机对事故负有责任与血液中含有酒精是否有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:

0.6
1.2
2.7
1.5
2.8
1.8
2.2
2.3
3.2
3.5
2.5
2.6
1.2
2.7
1.5
2.9
3.0
3.1
2.3
2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2
1.7
1.9
0.8
0.9
2.4
1.2
2.6
1.3
1.4
1.6
0.5
1.8
0.6
2.1
1.1
2.5
1.2
2.7
0.5
(1) 分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2) 根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
A药
 
B药
 
0.
1.
2.
3.
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x
3
4
5
6
y
2.5
3
4
4.5
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=bx+a.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解高二某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
下面的临界值表供参考:

(参考公式K2,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令赞成的人数如下表:

月收入
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01的前提下认为非高收入族赞成楼市限购令?
 
非高收入族
高收入族
合计
赞成
 
 
 
不赞成
 
 
 
合计
 
 
 
(2)现从月收入在[15,25)的人群中随机抽取两人,求所抽取的两人都赞成楼市限购令的概率.
附:K2
P(K2k0)
0.05
0.025
0.010
0.005
k0
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:

API
 

 

 

 

 

 

 

 
空气质量
 

 

 
轻微污染
 
轻度污染
 
中度污染
 
中重度污染
 
重度污染
 
天数
 
4
 
13
 
18
 
30
 
9
 
11
 
15
 
(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为w)的关系为:
,试估计在本年度内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?
附:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
非重度污染
 
重度污染
 
合计
 
供暖季
 
 
 
 
 
 
 
非供暖季
 
 
 
 
 
 
 
合计
 
 
 
 
 
100
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,下表是年龄的频率分布表.


(1)求正整数的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图.

(1)图中纵坐标处刻度不清,根据图表所提供的数据还原
(2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;
(3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率.

查看答案和解析>>

同步练习册答案