精英家教网 > 高中数学 > 题目详情

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:

分组
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
频数
 
12
 
63
 
86
 
182
 
92
 
61
 
4
 
乙厂:
分组
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
频数
 
29
 
71
 
85
 
159
 
76
 
62
 
18
 
 
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?
 
 
甲厂
 
乙厂
 
合计
 
优质品
 
 
 
 
 
 
 
非优质品
 
 
 
 
 
 
 
合 计
 
 
 
 
 
 
 
附:
P(χ2≥x0)
 
0.05
 
0.01
 
x0
 
3.841
 
6.635
 
 

(1) 72%   64%     (2) 有99%的把握认为“两个分厂生产的零件的质量有差异”

解析解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为=72%;
乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为=64%.
(2)

 
甲厂
乙厂
合计
优质品
360
320
680
非优质品
140
180
320
合计
500
500
1 000
χ2≈7.35>6.635,
所以有99%的把握认为“两个分厂生产的零件的质量有差异”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:

若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).
(1)试预测当广告费支出为12万元时,销售额是多少?
(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下茎叶图记录了甲,乙两组各三名同学在期末考试中的数学成绩(满分为100分).乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.

(1)若甲,乙两个小组的数学平均成绩相同,求a的值.
(2)求乙组平均成绩超过甲组平均成绩的概率.
(3)当a=2时,分别从甲,乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值为2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有工人人,其中名工人参加过短期培训(称为类工人),另外名工人参加过长期培训(称为类工人).现用分层抽样的方法(按类、类分二层)从该工厂的工人中共抽查 名工人,调查他们的生产能力(此处的生产能力指一天加工的零件数).
(1)类工人和类工人中各抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1

生产能力分组





人数





表2
生产能力分组




人数





①求,再完成下列频率分布直方图;
②分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组
中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某种产品表面进行腐蚀性刻线实验,得到腐蚀深度y与腐蚀时间x之间相应的一组观察值,如下表:

x/s
5
10
15
20
30
40
50
60
70
90
120
y/μm
6
10
10
13
16
17
19
23
25
29
46
用散点图及相关系数两种方法判断x与y的相关性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市500名居民的工作场所和呼吸系统健康,得到列联表如下:

 
 
室外工作
 
室内工作
 
合计
 
有呼吸系统疾病
 
150
 
 
 
 
 
无呼吸系统疾病
 
 
 
100
 
 
 
合计
 
200
 
 
 
 
 
(1)补全列联表;
(2)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关;
(3)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.
参考公式与临界值表:K2
P(K2≥k0)
 
0.100
 
0.050
 
0.025
 
0.010
 
0.001
 
k0
 
2.706
 
3.841
 
5.024
 
6.635
 
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从发生汽车碰撞事故的司机中抽取2 000名司机.根据他们的血液中是否含有酒精以及他们是否对事故负有责任.将数据整理如下:

 
有责任
无责任
合计
有酒精
650
150
800
无酒精
700
500
1 200
合计
1 350
650
2 000
那么,司机对事故负有责任与血液中含有酒精是否有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x
3
4
5
6
y
2.5
3
4
4.5
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=bx+a.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

同步练习册答案