精英家教网 > 高中数学 > 题目详情
19.已知△ABC的三个顶点分别是A(0,1),B(3,0),C(5,2),求△ABC的面积.

分析 利用△ABC所在的正方形的面积减去四周三个直角三角形的面积,列式进行计算即可得解.

解答 解:如图,
△ABC的面积=5×2-$\frac{1}{2}$×3×1-$\frac{1}{2}$×2×2-$\frac{1}{2}$×5×1
=10-1.5-2-2.5
=4.
△ABC的面积是4.

点评 主要考查了点的坐标的意义以及三角形面积的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$ax2-(a+2)x+2lnx(a∈R).
(1)若a=0,证明:f(x)<0;
(2)讨论函数f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{x}$,且对于?x∈R(x≠0),都有g(x)•f(ex)=1.
(1)求g(x)的解析式.并写出函数g(x)的单调区间;
(2)已知正数a,b,c:clnb=a+clnc且c≤2a,求$\frac{b}{a}$的最小值.
(3)在 区间[1,+∞)是否存在相异实数x1,x2,使得f(g(x1))=f(g(x2)),若存在,给出一组数值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:两个数的最大公约数的所有约数,都是这两个数的公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{a}$=1表示焦点在y轴上的椭圆,则实数a的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知m、n是两条不重合的直线,α、β是两个不重合的平面,给出下列命题;①若m?α,n?β,m∥n,则α∥β;②若m、n是异面直线,m∥β,n?β,n∥α,则α∥β.其中(  )
A.①②都是真命题B.①②都是假命题
C.①是真命题,②是假命题.D.①是假命题,②是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直角坐标系xOy中,设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点分别为F1和F2.过右焦点为F2且与x轴垂直的直线l与椭圆C相交,其中一个交点为M(1,$\frac{3}{2}$).(1)求椭圆C的方程:
(2)设点P在椭圆上,且|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=m(m≥1),求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平行四边形ABCD中,对角线AC、BD的交点为O,点P在△OBC内,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则x+y的取值范围是(  )
A.($\frac{1}{2}$,1)B.($\frac{1}{2}$,2)C.(1,$\frac{3}{2}$)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知空间四边形ABCD中,E,H分别为AB,AD的中点,F,G分别是BC,CD上的点,且$\frac{CF}{CB}$=$\frac{CG}{CD}$=$\frac{1}{3}$.
(1)求证:E,F,G,H四点共面;
(2)求证:三条直线EF,GH,AC交于一点;
(3)若AC⊥BD,求异面直线AC与EH所成角的大小.

查看答案和解析>>

同步练习册答案