【题目】已知函数.
(1)若在上存在单调递增区间,求实数的取值范围;
(2)设,若,恒有成立,求的最小值.
【答案】(1)(2)
【解析】
(1)求导得到,根据题意得到在上有解,则,计算得到答案.
(2)设,,计算得到单调递增,故,讨论,,三种情况,得到的取值范围为,设,根据函数的单调性得到答案.
(1)由,得,
由在上存在单调递增区间,可得在上有解,
即在上有解,则,∴,
∴的取值范围为.
(2)设,,
则.
设,则,
∴单调递增,即在上单调递增 ∴.
当时,,在上单调递增,∴,不符合题意;
当时,,在上单调递减,,符合题意;
当时,由于为一个单调递增的函数,
而,,
由零点存在性定理,必存在一个零点,使得,
从而在上单调递减,在上单调递增,
因此只需,∴,∴,从而,
综上,的取值范围为,
因此.设,则,
令,则,∴在上单调递减,在上单调递增,
从而,∴的最小值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为.
(1)求椭圆的方程;
(2)当的面积为(其中为坐标原点)且时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】刘徽是我国古代伟大的数学家,他的杰作《九章算术注》和《海岛算经》是我国最宝贵的数学遗产刘徽是世界上最早提出十进小数概念的人,他正确地提出了正负数的概念及其加减运算的规则.提出了“割圆术”,并用“割圆术”求出圆周率π为3.14.刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”被视为中国古代极限观念的佳作.其中“割圆术”的第一步是求圆的内接正六边形的面积,第二步是求圆的内接正十二边形的面积,依此类推.若在圆内随机取一点,则该点取自该圆内接正十二边形的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中,,点为的中点,点为线段垂直平分线上的一点,且,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且、在直线的同侧,在移动过程中,当取得最小值时,的面积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且曲线关于直线对称.
(1)求;
(2)若直线与曲线交于,,直线:与曲线交于,,且的面积不超过,求直线的倾斜角的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数,),在极坐标系(与平面直角坐标系取相同的单位长度,以坐标原点为极点,轴正半轴为极轴)中,曲线的极坐标方程为.
(1)若可,试判断曲线和的位置关系;
(2)若曲线与交于点,两点,且,满足.求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆.点E为椭圆在第一象限内一点,点F在椭圆上且与点E关于原点对称,直线与椭圆交于A,B两点,则点E,F到直线x+y-1=0的距离之和的最大值是________;此时四边形AEBF的面积是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com