精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且曲线关于直线对称.

1)求

2)若直线与曲线交于,直线与曲线交于,且的面积不超过,求直线的倾斜角的取值范围.

【答案】1;(2

【解析】

(1)把参数方程化为圆的方程,根据圆关于直线对称,易知直线过圆心,代入即可得解;

2)若设直线,代入圆的极坐标方程,再利用面积公式即可得解,或者再利用直线和圆的普通方法即可得解.

【解】(1)消参可得曲线的普通方程:,即以为圆心,半径为2的圆,

依题知直线过圆心

2)【法一】将化为极坐标方程:,直线

依题:,又

可得:

不重合,可得:,综上,的范围为

【法二】

如图,设

得:

不重合,可得:,综上,的范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是的中点,则(

A. B. C. 平面 D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1为椭圆的左焦点,在椭圆上,PF1x轴.

1)求椭圆的方程:

2)已知直线l与椭圆交于AB两点,且坐标原点O到直线l的距离为的大小是否为定值?若是,求出该定值:若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位年会进行抽奖活动,在抽奖箱里装有张印有“一等奖”的卡片, 张印

有“二等奖”的卡片, 3张印有“新年快乐”的卡片,抽中“一等奖”获奖元, 抽中“二等奖”获奖元,抽中“新年快乐”无奖金.

(1)单位员工小张参加抽奖活动,每次随机抽取一张卡片,抽取后不放回.假如小张一定要将所有获奖卡片全部抽完才停止. 记表示“小张恰好抽奖次停止活动”,求的值;

(2)若单位员工小王参加抽奖活动,一次随机抽取张卡片.

表示“小王参加抽奖活动中奖”,求的值;

②设表示“小王参加抽奖活动所获奖金数(单位:元)”,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为共8个等级。参照正态分布原则,确定各等级人数所占比例分别为.等级考试科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.

举例说明.

某同学化学学科原始分为65分,该学科等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属等级.而等级的转换分区间为61~70,那么该同学化学学科的转换分为:

设该同学化学科的转换等级分为,求得.

四舍五入后该同学化学学科赋分成绩为67.

(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.

(i)若小明同学在这次考试中物理原始分为84分,等级为,其所在原始分分布区间为82~93,求小明转换后的物理成绩;

(ii)求物理原始分在区间的人数;

(2)按高考改革方案,若从全省考生中随机抽取4人,记表示这4人中等级成绩在区间的人数,求的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在单调递增区间,求实数的取值范围;

2)设,若,恒有成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个函数

(Ⅰ)当时,求在区间上的最大值;

(Ⅱ)求证:对任意,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020229日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是( )

A.2019年我国居民每月消费价格与2018年同期相比有涨有跌

B.2019年我国居民每月消费价格中2月消费价格最高

C.2019年我国居民每月消费价格逐月递增

D.2019年我国居民每月消费价格3月份较2月份有所下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.为了了解学生和家长对网课授课方式的满意度,从经济不发达的A城市和经济发达的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:

若评分不低于80分,则认为该用户对此授课方式“认可”,否则认为该用户对此授课方式“不认可”.以该样本中AB城市的用户对此授课方式“认可”的频率分别作为AB城市用户对此授课方式“认可”的概率.现从A城市和B城市的所有用户中分别随机抽取2个用户,用表示这4个用户中对此授课方式“认可”的用户个数,则__________;用表示从A城市随机抽取2个用户中对此授课方式“认可”的用户个数,则的数学期望为_________

查看答案和解析>>

同步练习册答案