精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m≠n时,有
(1)若满足f(x+)+f(x-1)<0,求x的取值范围
(2)若f(x)≤t2-2at+1对任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
【答案】分析:(1)先用定义判断f(x)在[-1,1]上的单调性,由函数的单调性、奇偶性可去掉不等式中的符号“f”,解出即可;
(2)对任意的x∈[-1,1]不等式恒成立,等价于f(x)max=f(1))≤t2-2at+1,对任意a∈[-1,1]恒成立,可看作关于a的一次函数,借助图象可得关于a的不等式组,解出即可;
解答:解:(1)∵f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,
m、n∈[-1,1],m≠n时,有
∴任取x1,x2∈[-1,1],且x2≥x1
则f(x2)-f(x1)=>0,
∴f(x2)>f(x1),
∴函数f(x)在[-1,1]上单调递增.
∵f(x+)+f(x-1)<0,即f(x+)<f(1-x),
,解得0≤x≤
∴x的取值范围为[0,).
(2)由于f(x)为增函数,∴f(x)的最大值为f(1)=1,
∴f(x)≤t2-2at+1对a∈[-1,1]、x∈[-1,1]恒成立,
∴t2-2at+1≥1对任意a∈[-1,1]恒成立,
∴t2-2at≥0对任意a∈[-1,1]恒成立,
把y=t2-2at看作a的函数,
由a∈[-1,1],知其图象是一条线段,
∴t2-2at≥0对任意a∈[-1,1]恒成立,
∴有,即
解得t≤-2,或t=0,或t≥2.
故实数t的取值范围是{t|t≤-2,或t=0,或t≥2}.
点评:本题考查函数的单调性的判断,考查不等式解集的求法,考查转化思想、数形结合思想.解题时要认真审题,注意定义法、等价转化思想、构造法的合理运用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案