【题目】设 (n∈N*,an∈Z,bn∈Z).
(1)求证:an2﹣8bn2能被7整除;
(2)求证:bn不能被5整除.
【答案】
(1)证明:( 1+2 )2n+1 + (2 )+ (2 )2+…+ (2 )2n+1,
(1﹣2 )2n+1= ﹣ (2 )+ (2 )2+…﹣ (2 )2n+1,
由(1+2 )2n+1=an+2 bn,(1﹣2 )2n+1=an﹣2 bn,
(1+2 )2n+1(1﹣2 )2n+1=(an+2 bn)(an﹣2 bn),
即an2﹣8bn2=﹣72n+1,
∴an2﹣8bn2能被7整除;
(2)由an2﹣8bn2=﹣72n+1,则8bn2=an2+72n+1,
由72n=49n=(50﹣1)n= ×50n+ ×50n﹣1×(﹣1)1+…+ ×50×(﹣1)n﹣1+ ×(﹣1)n,
除最后一项都是5的倍数,
∴72n+1的余数是2或﹣2,
由an2的是平方数,其尾数为0,1,4,5,6,9,
∴an2+72n+1的尾数不可能是0或5,
∴an2+72n+1不能被5整除,
即8bn2不能被5整除,
∴bn不能被5整除.
【解析】(1)利用二项式定理展开( 1+2)2n+1与( 1-2)2n+1得到(1+2)2n+1=an+2bn,(1﹣2)2n+1=an﹣2bn,即可证明;(2)利用尾数为0或5的数能被5整除进行证明.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 设方程f(x)=2﹣x+b(b∈R)的四个实根从小到大依次为x1 , x2 , x3 , x4 , 对于满足条件的任意一组实根,下列判断中一定成立的是( )
A.x1+x2=2
B.e2<x3x4<(2e﹣1)2
C.0<(2e﹣x3)(2e﹣x4)<1
D.1<x1x2<e2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A、B两点,M是AB 的中点,过M作x 轴的垂线交C于N点.
(Ⅰ)证明:抛物线C在N 点处的切线与AB 平行;
(Ⅱ)是否存在实数k,使以AB为直径的圆M经过N点?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分别与
圆O:x2+y2=4交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.
(1)若 ,求CD的长;
(2)若CD中点为E,求△ABE面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , .
(1)求函数f(x)的值域;
(2)已知锐角△ABC的两边长a,b分别为函数f(x)的最小值与最大值,且△ABC的外接圆半径为 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为 (θ为参数),设直线l与曲线C交于A,B两点.若点P在曲线C上运动,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}是各项均为正数的等比数列,其前n项和为Sn , 且a1a5=64,S5﹣S3=48.
(1)求数列{an}的通项公式;
(2)设有正整数m,l(5<m<l),使得am , 5a5 , al成等差数列,求m,l的值;
(3)设k,m,l∈N*,k<m<1,对于给定的k,求三个数 5ak , am , al经适当排序后能构成等差数列的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C 的参数方程为 (α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)设l1:θ= ,l2:θ= ,若l 1、l2与曲线C 相交于异于原点的两点 A、B,求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com