精英家教网 > 高中数学 > 题目详情
1.已知P(x,y)为区域$\left\{\begin{array}{l}{y^2}-{x^2}≤0\\ a≤x≤a+1\end{array}\right.$(a>0)内的任意一点,当该区域的面积为3时,z=2x-y的最大值是(  )
A.1B.3C.$2\sqrt{2}$D.6

分析 由约束条件作出可行域,求出使可行域面积为3的a值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:由作出可行域如图,

由图可得A(a,a),D(a,a),B(a+1,a+1),C(a+1,-a-1)
由该区域的面积为3时,$\frac{2a+2a+2}{2}×1$=3,得a=1.
∴A(1,1),C(2,-2)
化目标函数z=2x-y为y=2x-z,
∴当y=2x-z过C点时,z最大,等于2×2-(-2)=6.
故选:D.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)=loga(x+28)-3(a>0且a≠1)的图象恒过定点A,若点A的横坐标为x0,函数g(x)=a${\;}^{x-{x_0}}}$+4的图象恒过定点B,则B点的坐标为(-27,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax3-$\frac{1}{2}$x2(a>0),x∈[0,+∞).
(1)若a=1,求函数f(x)在[0,1]上的最值;
(2)若函数y=f'(x)的递减区间为A,试探究函数y=f(x)在区间A上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若满足∠ABC=$\frac{π}{3}$,AC=m,BC=3的△ABC恰有一解,则实数m的取值范围是$m=\frac{{3\sqrt{3}}}{2}或m≥3$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.[$\root{3}{(-5)^{2}}$]${\;}^{\frac{3}{4}}$=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数g(x)=ax-lnx,a∈R,
(1)是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(2)当x∈(0,e]时,证明:${e^2}x>\frac{5}{2}+(1+\frac{1}{x})lnx$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=Asin(wx+φ)(A>0,w>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分图象如图所示,则f(x)的周期为(  )
A.3B.$\frac{5}{2}$C.$\frac{2π}{3}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的最小正周期为π,则ω=2;若其图象向右平移$\frac{π}{3}$个单位后得到的函数为偶函数,则φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,若输出的结果是5,则判断框内m的取值范围是(  )
A.(6,12]B.(12,20]C.(20,30]D.(12,20)

查看答案和解析>>

同步练习册答案