精英家教网 > 高中数学 > 题目详情
16.若满足∠ABC=$\frac{π}{3}$,AC=m,BC=3的△ABC恰有一解,则实数m的取值范围是$m=\frac{{3\sqrt{3}}}{2}或m≥3$.

分析 由满足∠ABC=$\frac{π}{3}$,AC=m,BC=3的△ABC恰有一解,可得m≥3或m=3sin60°.

解答 解:∵满足∠ABC=$\frac{π}{3}$,AC=m,BC=3的△ABC恰有一解,
∴m≥3或m=3sin60°=$\frac{3\sqrt{3}}{2}$.
故答案为:$m=\frac{{3\sqrt{3}}}{2}或m≥3$.

点评 本题考查了正弦定理解三角形、直角三角形的边角关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(ax+1)+x3-x2-ax(a∈R).
(1)若x=$\frac{2}{3}$为函数f(x)的极值点,求实数a的值;
(2)若a=-1时,方程f(1-x)-(1-x)3=b有实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)-f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)设g(x)=f(2x),求g(x)在[-3,0]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若X是离散型随机变量,P(X=a)=$\frac{1}{3}$,P(X=b)=$\frac{2}{3}$,且a<b,又已知E(X)=$\frac{2}{3}$,D(X)=$\frac{2}{9}$,则a+b的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的函数f(x)的图象关于(-$\frac{3}{4}$,0)成中心对称,且满足f(x)=-f(x+$\frac{3}{2}$),f(-1)=1,f(0)=-2,则f(1)+f(2)+…+f(2016)的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量Pmg/L与时间th间的关系为P=P0e-kt,如果在前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要15小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知P(x,y)为区域$\left\{\begin{array}{l}{y^2}-{x^2}≤0\\ a≤x≤a+1\end{array}\right.$(a>0)内的任意一点,当该区域的面积为3时,z=2x-y的最大值是(  )
A.1B.3C.$2\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=x2+2a|x|+4a2-3有三个不同的零点,则函数g(x)=f(x)-f(|a|+a+1)的零点个数是4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设两圆C1,C2都与y=x和y=-x相切,且都过点$(\frac{{3\sqrt{2}}}{2},\frac{{5\sqrt{2}}}{2})$,则两圆心的距离|C1C2|=(  )
A.$4\sqrt{2}$B.4C.$8\sqrt{2}$D.8

查看答案和解析>>

同步练习册答案